Построение стохастической модели процесса. Стохастическая модель процесса

Как следует из названия, данный вид моделей ориентирован на описание систем, которые проявляют статистически закономерное случайное поведение, а время в них можно рассматривать как дискретную величину. Сущность дискретизации времени такая же, как и в дискретно-детерминированных моделях. Модели систем такого рода могут быть построены на основе двух схем формализованного описания. Во-первых, это конечно-разностные уравнения, среди переменных которых используют функции, задающие случайные процессы. Во-вторых, в них применяют вероятностные автоматы .

Пример построения дискретно-стохастической системы. Пусть имеется некоторая производственная система, структура которой изображена на рис. 3.8. В рамках этой системы перемещается однородный материальный поток, проходящий стадии складирования и производства.

Пусть, например, поток сырья состоит из металлических болванок, которые складируются на входном складе. Затем эти болванки поступают на производство, где из них производят какое-то изделие. Готовые изделия складируются на выходном складе, откуда их забирают для дальнейших действий с ними (передают на следующие фазы производства или на реализацию). В общем случае такая производственная система преобразует материальные потоки сырья, материалов и полуфабрикатов в поток готовой продукции.

Пусть шаг изменения времени в данной производственной системе будет равен единице (Д?= 1). За единицу мы примем смену работы этой системы. Будем считать, что процесс изготовления изделия длится один временной шаг.

Рис. 3.8, Схема производственной системы

Управление производственным процессом осуществляется специальным регулирующим органом, которому задан план выпуска изделий в виде директивной интенсивности выпуска продукции (количество изделий, которое необходимо изготовить за единицу времени, в данном случае за смену). Обозначим эту интенсивность d t . Фактически это скорость выпуска продукции. Пусть d t =а+ bt, т. е. является линейной функцией. Это означает, что с каждой последующей сменой план увеличивается на величину bt.

Поскольку мы имеем дело с однородным материальным потоком, то считаем, что в среднем объем сырья, приходящего в систему в единицу времени, объем производства в единицу времени, объем готовой продукции, уходящей в единицу времени из системы, должны быть равны d t .

Входной и выходной потоки для регулирующего органа неуправляемы, их интенсивность (или скорость - число болванок либо изделий в единицу времени, соответственно приходящих в систему и уходящих из нее) должны быть равны d t . Однако в процессе транспортировки болванки могут быть утеряны, или часть из них будет некачественной, или по каким-то причинам их поступит больше, чем нужно, и т.п. Поэтому будем считать, что входной поток обладает интенсивностью:

х t вх =d t + ξ t вх,

где ξ 1 вх - равномерно распределенная случайная величина от -15 до +15.

Примерно те же самые процессы могут происходить с выходным потоком. Поэтому выходной поток обладает следующей интенсивностью:

х t в ы х =d t + ξ t вых,

где ξ t вых - нормально распределенная случайная величина с нулевым математическим ожиданием и дисперсией, равной 15.

Будем считать, что и в процессе производства имеются случайности, связанные с неявкой рабочих на работу, поломкой станков и т.п. Описывает эти случайности нормально распределенная случайная величина с нулевым математическим ожиданием и дисперсией, равной 15. Обозначим ее ξ t/ Процесс производства длится единицу времени, за которую с входного склада изымается x t сырья, затем это сырье обрабатывается и передается на выходной склад за ту же единицу времени. Регулирующий орган получает информацию о работе системы тремя возможными способами (они отмечены цифрами 1, 2, 3 на рис. 3.8). Мы считаем, что эти способы получения информации по каким-либо причинам являются в системе взаимоисключающими.

Способ 1. Регулирующий орган получает только информацию о состоянии входного склада (например, об изменении запасов на складе либо об отклонении объема запасов от их нормативного уровня) и по ней судит о скорости протекания производственного процесса (о скорости изымания сырья со склада):

1) (u t вх - u t-1 вх )- изменение объема запасов на складе (u t вх - объем сырья на входном складе в момент времени t);

2) (ù- u t вх) - отклонение объема сырья на входном складе от нормы запасов.

Способ 2. Регулирующий орган получает информацию непосредственно с производства (x t - фактическая интенсивность производства) и сравнивает ее с директивной интенсивностью (d t -x t).

Способ 3. Регулирующий орган получает информацию, как и при способе 1, но с выходного склада в виде (u t вых - u t-1 вых )- или (ù -u t вых). Он также судит о производственном процессе на основания косвенных данных - росте или уменьшении запасов готовой продукции.

Чтобы поддержать заданную интенсивность выпуска продукции d t , регулирующий орган принимает решения y t , (либо (y t - y t - 1)), нацеленные на изменение фактической интенсивности выпуска x t . В качестве решения регулирующий орган сообщает производству значения интенсивности, с которой надо работать, т. е. x t = y t . Второй вариант управляющего решения - (y t -y t-1), т.е. регулирующий орган сообщает производству, на сколько нужно увеличить или уменьшить интенсивность производства (х t -х t-1 ).

В зависимости от способа получения информации и вида переменной, описывающей управляющее воздействие, на принятие решений могут влиять следующие величины.

1. База решения (величина, которой должна быть равна фактическая интенсивность производства, если бы не было отклонений):

директивная интенсивность выпуска в момент t(d t);

темп изменения директивной интенсивности выпуска в момент t(d t -d t-1).

2. Величина отклонения:

отклонение фактического выпуска от директивного (d t -x t);

отклонение фактического объема выпуска от планового объема


Σ d τ - Σ х τ

изменение уровня запасов на входном ((u t вх - u t-1 вх) или выходном

(u t вых - u t-1 вых) складах;

отклонение уровня запасов на входном (ù- u t вх) или выходном (ù -u t вых) складах от нормативного уровня.

В общем случае управленческое решение, принимаемое регулирующим органом, состоит из следующих составляющих:

Примеры решений:

y t = d t +y(d t-1 -x t-1);

y t = d t -y(ù -u t вых)

Принимая различные по форме решения, регулирующий орган стремится достичь главную цель - приблизить фактическую интенсивность выпуска к директивной. Однако он не всегда может непосредственно ориентироваться в своих решениях на степень достижения этой цели (d t - x t). Конечные результаты могут выражаться в достижении локальных целей - стабилизации уровня запасов на входном или выходном складе (и t вх(вых) - и t -1 вх(вых)) либо в приближении уровня запасов на складе к нормативному - и вх (вых)). В зависимости от достигаемой цели в управляющем решении определяется вид знака (+ или -) перед долей рассогласования, используемой для регулирования.

Пусть в нашем случае регулирующий орган получает информацию о состоянии входного склада (изменение уровня запасов). Известно, что в любой системе управления имеют место запаздывания по выработке и реализации решения. В данном примере информация о состоянии входного склада поступает в орган регулирования с запаздыванием на один временной шаг. Такое запаздывание называется запаздыванием по выработке решения и означает, что к моменту получения информации в регулирующем органе реальное состояние уровня запасов на входном складе будет уже другим. После того как регулирующий орган принял решение у t также потребуется время (в нашем примере это будет единица времени) для доведения решения до исполнителя. Значит, фактическая интенсивность производства равна не y t , а тому решению, которое управляющий орган принял единицу времени назад. Это - запаздывание по реализации решения.

Для описания нашей производственной системы имеем следующие уравнения:

x t BX = d t + ξ t вх

x t вых = d t + ξ t вых;

y t = d t + y(u -u t-2 вх)

x t = y t-1 + ξ t

u t вх - u t-1 вх = x t вх - x t

Данная система уравнений позволяет построить модель производственной системы, в которой входными переменными будут d t , ξ t вх, ξ t вых, ξ t ,а

выходной - x t . Это так, поскольку внешний наблюдатель рассматривает наше производство как систему, получающую сырье с интенсивностью d t и производящую продукцию с интенсивностью x t , подвергаясь случайностям ξ t вх, ξ t вых, ξ t . Осуществив все подстановки в полученной системе уравнений, приходим к одному уравнению динамики, характеризующему поведение x t в зависимости от d t , ξ t вх, ξ t вых, ξ t .

Рассмотренная выше модель не содержала ограничений на объемы складов и мощности производства. Если принять, что емкость входного склада равна V вх, емкость выходного склада - V BX , a мощность производства - М, то новая система уравнений для такой нелинейной производственной системы будет следующей:

x t BX =min((d t + ξ t вх),(V вх - u t вх)) - нельзя на входной склад положить больше, чем позволит место;

x вых =min((d t + ξ t вых),(V вых -u t вых)) - нельзя взять с выходного склада больше изделий, чем там имеется;

y t =d t + y(u t вх -u t-1 вх)

x t BX = min((u t вх, (y t-1 + ξ t вх), М, (V вых - u t вых)) - нельзя произвести больше изделий, чем приказано, ограничивающими факторами являются число имеющихся заготовок и наличие свободного места на выходном складе;

u t вх -u t-1 вх = x t BX - x t

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Пример построения стохастической модели процесса

В процессе функционирования банка очень часто возникает необходимость в решении проблемы выбора вектора активов, т.е. инвестиционного портфеля банка, и неопределенные параметры, которые необходимо учитывать в этой задаче, связаны в первую очередь с неопределенностью цен на активы (ценные бумаги, реальные вложения и т.д.). В качестве иллюстрации можно привести пример с формированием портфеля государственных краткосрочных обязательств.

Для задач данного класса принципиальный вопрос - это построение модели стохастического процесса изменения цен, поскольку в распоряжении исследователя операции, естественно, имеется только конечный ряд наблюдений реализаций случайных величин - цен. Далее излагается один из подходов к решению этой проблемы, который развивается в ВЦ РАН в связи с решением задач управления стохастическими марковскими процессами.

Рассматриваются М видов ценных бумаг, i =1,… , M , которые торгуются на специальных биржевых сессиях. Бумаги характеризуются величинами - выраженными в процентах доходностями в течение текущей сессии. Если бумага вида в конце сессии покупается по цене и продается в конце сессии по цене, то.

Доходности - это случайные величины, формирующиеся следующим образом. Предполагается существование базовых доходностей - случайных величин, образующих марковский процесс и определяемых по следующей формуле:

Здесь, - константы, а - стандартные нормально распределенные случайные величины (т.е. с нулевым математическим ожиданием и единичной дисперсией).

где - некоторый масштабный коэффициент равный (), а - случайная величина, имеющая смысл отклонения от базового значения и определяемая аналогично:

где - также, стандартные нормально распределенные случайные величины.

Предполагается, что некоторая оперирующая сторона, называемая в дальнейшем оператором, в течение некоторого времени управляет своим капиталом, вложенным в бумаги (во всякий момент в бумагу ровно одного вида), продавая их в конце текущей сессии и тут же покупая на вырученные деньги другие бумаги. Управление, выбор приобретаемых бумаг, производится по алгоритму, зависящему от информированности оператора о процессе, формирующем доходности бумаг. Нами будут рассматриваться различные гипотезы об этой информированности и, соответственно, различные алгоритмы управления. Будем предполагать, что исследователь операции, разрабатывает и оптимизирует алгоритм управления, используя имеющийся ряд наблюдений за процессом, т.е., используя информацию о ценах закрытия на биржевых сессиях, а также, возможно, и о величинах, на некотором промежутке времени, соответствующем сессиям с номерами. Целью экспериментов является сравнение оценок ожидаемой эффективности различных алгоритмов управления с их теоретическим математическим ожиданием в условиях, когда алгоритмы настраиваются и оцениваются на одном и том же ряду наблюдений. Для оценки теоретического математического ожидания используется метод Монте-Карло «прогонкой» управления по достаточно объемному сгенерированному ряду, т.е. по матрице размерности, где столбцы соответствуют реализациям значений и по сессиям, а число определяется вычислительными возможностями, но при условии, чтобы элементов матрицы было не менее 10000. Необходимо, чтобы «полигон» был одним и тем же во всех проводимых экспериментах. Имеющийся ряд наблюдений имитирует сгенерированная матрица размерности, где значения в ячейках имеют тот же смысл, что и выше. Число и значения в этой матрице будут в дальнейшем варьироваться. Матрицы обоих видов формируются посредством процедуры генерации случайных чисел, имитирующей реализацию случайных величин, и расчета по этим реализациям и формулам (1) - (3) искомых элементов матриц.

Оценка эффективности управления на ряду наблюдений производится по формуле

где - индекс последней сессии в ряду наблюдений, а - номер облигаций, выбранных алгоритмом на шаге, т.е. того вида облигаций, в которых, согласно алгоритму, будет находиться капитал оператора в течение сессии. Кроме того, будем рассчитывать также месячную эффективность. Число 22 приблизительно соответствует числу торговых сессий за месяц.

Вычислительные эксперименты и анализ результатов

Гипотезы

Точное знание оператором будущих доходностей.

Индекс выбирается как. Этот вариант дает верхнюю оценку для всех возможных алгоритмов управления, даже в случае, если дополнительная информация (учет каких-то дополнительных факторов) позволит уточнить модель прогноза цен.

Случайное управление.

Оператор не знает закона ценообразования и проводит операции случайным выбором. Теоретически, в данной модели математическое ожидание результата операций совпадает с тем, как если бы оператор вкладывал капитал не в одну бумагу, а во все поровну. При нулевых математических ожиданиях величин математическое ожидание величины равно 1. Расчеты по данной гипотезе полезны только в том смысле, что позволяют в некоторой степени проконтролировать корректность написанных программ и сгенерированной матрицы значений.

Управление при точном знании модели доходностей, всех ее параметров и наблюдаемой величины .

В этом случае оператор в конце сессии, зная значения и для сессий, и, а в наших расчетах, используя строки, и, матрицы, вычисляет по формулам (1) - (3) математические ожидания величин и выбирает для покупки бумагу с наибольшей из этих значений величин.

где, согласно (2), . (6)

Управление при знании структуры модели доходностей и наблюдаемой величине , но неизвестных коэффициентах .

Будем предполагать, что исследователь операции не только не знает значения коэффициентов, но не знает и число влияющих на формирование величин, предшествующих значений этих параметров (глубину памяти марковских процессов). Не знает также, одинаковы или различны коэффициенты при разных значениях. Рассмотрим различные варианты действий исследователя - 4.1, 4.2, и 4.3, где второй индекс обозначает предположение исследователя о глубине памяти процессов (одинаковой для и). К примеру, в случае 4.3 исследователь предполагает, что формируется согласно уравнению

Здесь, для полноты описания, добавлен свободный член. Однако, этот член может быть исключен либо из содержательных соображений, либо статистическими методами. Поэтому для упрощения расчетов мы в дальнейшем свободные члены при настройке параметров из рассмотрения исключаем и формула (7) приобретает вид:

В зависимости от того, предполагает ли исследователь одинаковыми или различными коэффициенты при разных значениях, будем рассматривать подслучаи 4.m. 1 - 4.m. 2, m = 1 - 3. В случаях 4.m. 1 коэффициенты будут настраиваться по наблюденным значениям для всех бумаг вместе. В случаях 4.m. 2 коэффициенты настраиваются для каждой бумаги отдельно, при этом исследователь работает в рамках гипотезы, что коэффициенты, различны при разных и, к примеру, в случае 4.2.2. значения определяются модифицированной формулой (3)

Первый способ настройки - классический метод наименьших квадратов. Рассмотрим его на примере настройки коэффициентов при в вариантах 4.3.

Согласно формуле (8),

Требуется найти такие значения коэффициентов, чтобы минимизировать выборочную дисперсию для реализаций на известном ряду наблюдений, массиве при условии, что математическое ожидание значений определяется формулой (9).

Здесь и в дальнейшем знак «» указывает на реализацию случайной величины.

Минимум квадратичной формы (10) достигается в единственной точке, в которой все частные производные равны нулю. Отсюда получаем систему трех алгебраических линейных уравнений:

решение которой дает искомые значения коэффициентов.

После того как коэффициенты верифицированы, выбор управлений проводится так же, как и в случае 3.

Замечание. Для того, чтобы облегчить работу над программами, принято процедуру выбора управления, описанную для гипотезы 3, сразу писать, ориентируясь не на формулу (5), а на ее модифицированный вариант в виде

При этом в расчетах для случаев 4.1.m и 4.2.m, m = 1, 2, лишние коэффициенты обнуляются.

Второй способ настройки состоит в выборе значений параметров так, чтобы максимизировать оценку из формулы (4). Задача эта аналитически и вычислительно безнадежно сложна. Поэтому здесь можно говорить только о приемах некоторого улучшения значения критерия относительно исходной точки. За исходную точку можно взять значения, полученные методом наименьших квадратов, и затем произвести обсчет вокруг этих значений по сетке. При этом последовательность действий такова. Сначала обсчитывается сетка на параметрах (квадрат или куб) при фиксированных остальных параметрах. Затем для случаев 4.m. 1 обсчитывается сетка на параметрах, а для случаев 4.m. 2 на параметрах при фиксированных остальных параметрах. В случае 4.m. 2 далее так же оптимизируются параметры. Когда этим процессом исчерпываются все параметры, процесс повторяется. Повторения производятся до тех пор, пока новый цикл дает улучшение значений критерия по сравнению с предыдущим. Чтобы число итераций не оказалось слишком большим, применим следующий прием. Внутри каждого блока расчетов на 2-х или 3-х-мерном пространстве параметров сначала берется достаточно грубая сетка, затем, если лучшая точка оказывается на краю сетки, то исследуемый квадрат (куб) сдвигается и расчет повторяется, если же лучшая точка внутренняя, то строится новая сетка вокруг этой точки с меньшим шагом, но с тем же общим числом точек, и так некоторое, но разумное число раз.

Управление при ненаблюдаемом и без учета зависимости между доходностями разных бумаг.

Имеется в виду, что исследователь операции не замечает зависимости между разными бумаги, ничего не знает о существовании и пытается прогнозировать поведение каждой бумаги по отдельности. Рассмотрим, как обычно, три случая, когда исследователь моделирует процесс формирования доходностей в виде марковского процесса глубиной 1, 2, и 3:

Коэффициенты для прогноза ожидаемой доходности не важны, а коэффициенты настраиваются двумя способами, описанными в п. 4. Управления выбираются, аналогично тому, как это делалось выше.

Замечание: Так же, как и для выбора управления, для метода наименьших квадратов имеет смысл написать единую процедуру с максимальным числом переменных - 3. Если настраиваемые переменные, скажем, то для из решения линейной системы выписывается формула, в которую входят только константы, определяется через, а через и. В случаях, когда переменных меньше чем три, значения лишних переменных обнуляются.

Хотя расчеты в различных вариантах проводятся сходным образом, число вариантов довольно велико. Когда подготовка инструментов для расчетов во всех перечисленных вариантах оказывается затруднительным, рассматривается на экспертном уровне вопрос о сокращении их числа.

Управление при ненаблюдаемом с учетом зависимости между доходностями разных бумаг.

Это серия экспериментов имитирует те манипуляции, которые были произведены в задаче с ГКО . Мы предполагаем, что исследователь практически ничего не знает о механизме формирования доходностей. Он располагает только рядом наблюдений, матрицей. Из содержательных соображений он делает предположение о взаимозависимости текущих доходностей разных бумаг, группирующихся около некоторой базовой доходности, определяемой состоянием рынка в целом. Рассматривая графики доходностей бумаг от сессии к сессии, он делает предположение, что в каждый момент времени точки, координатами которых являются номера бумаг и доходности (в реальности это были сроки до погашения бумаг и их цены), группируются возле некоторой кривой (в случае с ГКО - параболы).

Здесь - точка пересечения теоретической прямой с осью ординат (базовая доходность), а - ее наклон (то, что должно быть равным 0.05).

Построив таким образом теоретические прямые, исследователь операции может рассчитать значения - отклонения величин от их теоретических значений.

(Заметим, что здесь имеют несколько иной смысл, чем в формуле (2). Отсутствует размерный коэффициент, и рассматриваются отклонения не от базового значения, а от теоретической прямой.)

Следующей задачей является прогноз значений по известным в момент значениям, . Поскольку

для прогноза значений исследователю требуется ввести гипотезу о формировании величин, и. По матрице исследователь может установить значительную корреляцию между величинами и. Можно принять гипотезу о линейной зависимости между величинами от: . Из содержательных соображений коэффициент сразу полагается равным нулю, и методом наименьших квадратов ищется в виде:

Далее, как и выше и моделируются посредством марковского процесса и описываются формулами, аналогичными (1) и (3) с разным числом переменных в зависимости от глубины памяти марковского процесса в рассматриваемом варианте. (здесь определяется не по формуле (2), а по формуле (16))

Наконец, как и выше реализуются два способа настройки параметров методом наименьших квадратов, и посредством непосредственной максимизации критерия и делаются оценки.

Эксперименты

Для всех описанных вариантов рассчитывались оценки критериев, при разных матрицах. (матрицы с числом строк 1003, 503, 103 и для каждого варианта размерности реализовывались порядка ста матриц). По результатам расчетов для каждой размерности оценивались математическое ожидание и дисперсия величин, и их отклонение от величин, для каждого из подготовленных вариантов.

Как показали первые серии вычислительных экспериментов при малом числе настраиваемых параметров (порядка 4), выбор метода настройки не оказывает существенного влияния на значение критерия в задаче.

2. Классификация средств моделирования

стохастический моделирование банк алгоритм

Классификация методов моделирования и моделей может проводиться по степени подробности моделей, по характеру признаков, по сфере приложения и т.д.

Рассмотрим одну из распространенных классификаций моделей по средствам моделирования, именно этот аспект является наиболее важным при анализе различных явлений и систем.

материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира.

По средствам моделирования методы моделирования делятся на две группы: методы материального и методы идеального моделирования Моделирование называется материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира. В свою очередь в материальном моделировании можно выделить: пространственное, физическое и аналоговое моделирование.

В пространственном моделировании используются модели, предназначенные для того, чтобы воспроизвести или отобразить пространственные свойства изучаемого объекта. Модели в этом случае геометрически подобны объектам исследования (любые макеты).

Модели, используемые в физическом моделировании предназначены для воспроизводства динамики процессов, происходящих в изучаемом объекте. Причем общность процессов в объекте исследования и модели основана на сходстве их физической природы. Этот метод моделирования широко распространен в технике при проектировании технических систем различного вида. Например, исследование летательных аппаратов на основе экспериментов в аэродинамической трубе.

Аналоговое моделирование связано с использованием материальных моделей, имеющих другую физическую природу, но описывающихся теми же математическими соотношениями, что и изучаемый объект. Оно основано на аналогии в математическом описании модели и объекта (изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями, но более удобной в проведении экспериментов).

Во всех случаях материального моделирования модель-это материальное отражение исходного объекта, а исследование состоит в материальном воздействии на модель, то есть в эксперименте с моделью. Материальное моделирование по своей природе является экспериментальным методом и в экономических исследованиях не используется.

От материального моделирования принципиально отличается идеальное моделирование , основанное на идеальной, мыслимой связи между объектом и моделью. Методы идеального моделирования широко используются в экономических исследованиях. Их условно можно разделить на две группы: формализованное и неформализованное.

В формализованном моделировании моделью служат системы знаков или образов, вместе с которыми задаются правила их преобразования и интерпретации. Если в качестве моделей используются системы знаков, то моделирование называется знаковым (чертежи, графики, схемы, формулы).

Важным видом знаковой моделирования является математическое моделирование , основанное на том факте, что различные изучаемые объекты и явления могут иметь одинаковое математическое описание в виде совокупности формул, уравнений, преобразование которых осуществляется на основе правил логики и математики.

Другой формой формализованного моделирования является образное, в котором модели строятся на наглядных элементах (упругие шары, потоки жидкости, траектории движения тел). Анализ образных моделей осуществляется мысленно, поэтому они могут быть отнесены к формализованному моделированию, когда правила взаимодействия объектов, используемых в модели четко фиксированы (например, в идеальном газе столкновение двух молекул рассматривается, как соударение шаров, причем результат соударения мыслится всеми одинаково). Модели такого типа широко используются в физике, их принято называть «мысленными экспериментами».

Неформализованное моделирование. К нему можно отнести такой анализ проблем разнообразного типа, когда модель не формируется, а вместо нее используется некоторое точно не зафиксированное мысленное отображение реальной действительности, служащее основой для рассуждения и принятия решения. Таким образом, всякое рассуждение не использующее формальную модель можно считать неформализованным моделированием, когда у мыслящего индивидуума имеется некоторый образ объекта исследования, который можно интерпретировать как неформализованную модель реальности.

Исследование экономических объектов в течение долгого времени проводилось только на основе таких неопределенных представлений. В настоящее время анализ неформализованных моделей остается наиболее распространенным средством экономического моделирования, а именно всякий человек, принимающий экономическое решение без использования математических моделей вынужден руководствоваться тем или иным описанием ситуации, основанной на опыте и интуиции.

Основным недостатком этого подхода является то, что решения может оказаться мало эффективным или ошибочным. Еще долгое время, по-видимому, эти методы останутся основным средством принятия решений не только в большинстве обыденных ситуаций, но и при принятий решений в экономике.

Размещено на Allbest.ru

...

Подобные документы

    Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.

    контрольная работа , добавлен 10.11.2010

    Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат , добавлен 11.02.2011

    Исследование особенностей разработки и построения модели социально-экономической системы. Характеристика основных этапов процесса имитации. Экспериментирование с использованием имитационной модели. Организационные аспекты имитационного моделирования.

    реферат , добавлен 15.06.2015

    Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.

    контрольная работа , добавлен 23.12.2013

    Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа , добавлен 17.10.2014

    Этапы построения деревьев решений: правило разбиения, остановки и отсечения. Постановка задачи многошагового стохастического выбора в предметной области. Оценка вероятности реализации успешной и неуспешной деятельности в задаче, ее оптимальный путь.

    реферат , добавлен 23.05.2015

    Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.

    презентация , добавлен 18.03.2014

    Основной тезис формализации. Моделирование динамических процессов и имитационное моделирование сложных биологических, технических, социальных систем. Анализ моделирования объекта и выделение всех его известных свойств. Выбор формы представления модели.

    реферат , добавлен 09.09.2010

    Основные этапы математического моделирования, классификация моделей. Моделирование экономических процессов, основные этапы их исследования. Системные предпосылки формирования модели системы управления маркетинговой деятельностью предприятия сферы услуг.

    реферат , добавлен 21.06.2010

    Общая схема процесса проектирования. Формализация построения математической модели при проведении оптимизации. Примеры использования методов одномерного поиска. Методы многомерной оптимизации нулевого порядка. Генетические и естественные алгоритмы.

Построение стохастической модели включает разработку, оценку качества и исследование поведения системы с помощью уравнений, описывающих изучаемый процесс.

Для этого путем проведения специального эксперимента с реальной системой добывается исходная информация. При этом используются методы планирования эксперимента, обработки результатов, а также критерии оценки полученных моделей, базирующиеся на таких разделах математической статистики как дисперсионный, корреляционный, регрессионный анализ и др.

В основе методов построения статистической модели, описывающей технологический процесс (рис.6.1) лежит концепция «черного ящика». Для него возможны многократные измерения входных факторов: x 1 ,x 2 ,…,x k и выходных параметров: y 1 ,y 2 ,…,y p , по результатам которых устанавливают зависимости:

При статистическом моделировании вслед за постановкой задачи (1) производится отсеивание наименее важных факторов из большого числа входных переменных, влияющих на ход процесса (2). Выбранные для дальнейшего исследования входные переменные составляют список факторов x 1 ,x 2 ,…,x k в (6.1), управляя которыми можно регулировать выходные параметры y n . Количество выходных параметров модели также следует по возможности уменьшить, чтобы сократить затраты на эксперименты и обработку данных.

При разработке статистической модели обычно ее структура (3) задается произвольно, в виде удобных для использования функций, аппроксимирующих опытные данные, а затем уточняется на основе оценки адекватности модели.

Наиболее часто используется полиномиальная форма модели. Так, для квадратичной функции:

(6.2)

где b 0 , b i , b ij , b ii – коэффициенты регрессии.

Обычно сначала ограничиваются наиболее простой линейной моделью, для которой в (6.2) b ii =0, b ij =0 . В случае ее неадекватности усложняют модель введением членов, учитывающих взаимодействие факторов x i ,x j и (или) квадратичных членов .

С целью максимального извлечения информации из проводимых экспериментов и уменьшения их числа проводится планирование экспериментов (4) т.е. выбор количества и условий проведения опытов необходимых и достаточных для решения с заданной точностью поставленной задачи.

Для построения статистических моделей применяют два вида экспериментов: пассивный и активный. Пассивный эксперимент проводится в форме длительного наблюдения за ходом неуправляемого процесса, что позволяет собрать обширный ряд данных для статистического анализа. В активном эксперименте имеется возможность регулирования условий проведения опытов. При его проведении наиболее эффективно одновременное варьирование величины всех факторов по определенному плану, что позволяет выявить взаимодействие факторов и сократить число опытов.

На основе результатов проведенных экспериментов (5) вычисляют коэффициенты регрессии (6.2) и оценивают их статистическую значимость, чем завершается построение модели (6). Мерой адекватности модели (7) является дисперсия, т.е. среднеквадратичное отклонение вычисляемых значений от экспериментальных. Полученная дисперсия сопоставляется с допустимой при достигнутой точности экспериментов.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Демидова Анастасия Вячеславовна. Метод построения стохастических моделей одношаговых процессов: диссертация... кандидата физико-математических наук: 05.13.18 / Демидова Анастасия Вячеславовна;[Место защиты: Российский университет дружбы народов].- Москва, 2014.- 126 с.

Введение

Глава 1. Обзор работ по теме диссертации 14

1.1. Обзор моделей популяционной динамики 14

1.2. Стохастические популяционные модели 23

1.3. Стохастические дифференциальные уравнения 26

1.4. Сведения по стохастическому исчислению 32

Глава 2. Метод моделирования одношаговых процессов 39

2.1. Одношаговые процессы. Уравнение Колмогорова-Чепмена. Основное кинетическое уравнение 39

2.2. Метод моделирования многомерных одношаговых процессов. 47

2.3. Численное моделирование 56

Глава 3. Применение метода моделирования одношаговых процессов 60

3.1. Стохастические модели популяционной динамики 60

3.2. Стохастические модели популяционных систем с различными меж- и внутривидовыми взаимодействиями 75

3.3. Стохастическая модель распространения сетевых червей. 92

3.4. Стохастические модели пиринговых протоколов 97

Заключение 113

Литература 116

Стохастические дифференциальные уравнения

Одной из задач диссертации является задача записи стохастического дифференциального уравнения для системы так, чтобы стохастический член был связан со структурой изучаемой системы. Одно из возможных решений этой задачи - это получение стохастической и детерминистической частей из одного и тоже уравнения. Для этих целей удобно использовать основное кинетическое уравнение, которое может быть аппроксимировано уравнением Фоккера-Планка, для которого,в свою очередь, можно записать эквивалентное ему стохастическое дифференциальное уравнение в форме уравнения Ланжевена.

Раздел 1.4. содержит основные сведения, необходимые для обозначения связи между стохастическим дифференциальным уравнением и уравнением Фоккера-Планка, а также основные понятия стохастического исчисления.

Во второй главе приводятся основные сведения из теории случайных процессов и на основе этой теории формулируется метод моделирования одношаговых процессов.

В разделе 2.1 приведены основные сведения из теории случайных одношаговых процессов.

Под одношаговыми процессами понимаются марковские процессы с непрерывным временем, принимающие значения в области целых чисел, матрица перехода которых допускает только переходы между соседними участками.

Рассматривается многомерный одношаговый процесс Х() = (i(),2(), ...,n()) = { j(), = 1, } , (0.1) изменяющийся по на отрезке , т.е. Є , где - длина временного интервала, на котором задан процесс Х(). Множество G = {х, = 1, Є NQ х NQ1 - это множество дискретных значений, которые может принимать случайный процесс.

Для данного одношагового процесса вводятся вероятности переходов в единицу времени s+ и s из состояния Xj в состояние Xj__i и Xj_i соответственно. При этом считается, что вероятность перехода из состояния х на два или белее шагов за единицу времени очень мала. Поэтому можно говорить, что вектор Xj состояния системы изменяются шагами длины Г{ и тогда вместо переходов из х в Xj+i и Xj_i можно рассматривать переходы из X в X + Гі и X - Гі соответственно.

При моделировании систем, в которых временная эволюция происходит в результате взаимодействия элементов системы удобно описывать с помощью основного кинетического уравнения, (другое название управляющее уравнение , а в англоязычной литературе носит название Master equation ).

Далее встает вопрос, как получить описание исследуемой системы, описываемой одношаговыми процессами, с помощью стохастического дифференциального уравнения в форме уравнения Ланжевена из основного кинетиче 11 ского уравнения. Формально к стохастическим уравнениям следует отнести лишь уравнения, содержащие стохастические функции. Таким образом, этому определению удовлетворяют лишь уравнения Ланжевена. Однако они связаны непосредственно с другими уравнениями, а именно с уравнением Фоккера-Планка и основным кинетическим уравнением. Поэтому представляется логичным рассматривать все эти уравнения в совокупности. Поэтому для решения этой задачи предлагается аппроксимировать основное кинетическое уравнение уравнением Фоккера-Планка, для которого можно записать эквивалентное ему стохастическое дифференциальное уравнение в форме уравнения Ланжевена.

В разделе 2.2 формулируется метод описания и стохастического моделирования систем, описываемых многомерными одношаговыми процессами.

Кроме того, показано, что коэффициенты для уравнения Фоккера-Планка можно получить сразу после записи для изучаемой системы схемы взаимодействия, вектора изменения состояния r и выражений для вероятностей перехода s+ и s-, т.е. при практическом применении данного метода нет необходимости записывать основное кинетическое уравнение.

В разделе 2.3. рассмотрен метод Рунге-Кутта для численного решения стохастических дифференциальных уравнений, который используется в третьей главе для иллюстрации полученных результатов.

В третьей главе представлена иллюстрация применения, описанного во второй главе метода построения стохастических моделей, на примере систем описывающих динамику роста взаимодействующих популяций, таких как «хищник-жертва», симбиоз, конкуренция и их модификации. Целью является записать их в виде стохастических дифференциальных уравнений и исследовать влияние введения стохастики на поведение системы.

В разделе 3.1. проиллюстрировано применение описанного во второй главе метода на примере модели «хищник-жертва». Системы с взаимодействием двух видов популяций типа «хищник-жертва» широко исследованы, что позволяет сравнить полученные результаты с уже хорошо известными.

Анализ полученных уравнений показал, что для исследования детерминистического поведения системы, можно использовать вектор сносов A полученного стохастического дифференциального уравнения, т.е. разработанный метод можно использовать для анализа как стохастического, так и детерминистического поведения. Кроме того сделан вывод, что стохастические модели дают более реалистичное описание поведения системы. В частности, для системы «хищник-жертва» в детерминистическом случае, решения уравнений имеют периодический вид и фазовый объем сохраняется, в то время как, введение стохаcтики в модель, дает монотонное возрастание фазового объема, что говорит о неизбежной гибели одной либо обеих популяций. В целях визуализации полученных результатов было проведено численное моделирование.

В разделе 3.2. разработанный метод применяется для получения и анализа различных стохастических моделей популяционной динамики, таких как модель «хищник–жертва» с учётом межвидовой конкуренции среди жертв, симбиоз, конкуренция и модель взаимодействия трех популяций.

Сведения по стохастическому исчислению

Развитие теории случайных процессов привело к переходу в исследования природных явлений от детерминистических представлений и моделей популяционной динамики к вероятностным и как следствие, появление большого числа работ посвященных стохастическому моделированию в математической биологии, химии, экономике и д.р.

При рассмотрении детерминистических популяционных моделей остаются не охваченными такие важные моменты, как случайные влияния различных факторов на эволюцию системы. Описывая популяционную динамику следует учитывать случайный характер размножения и выживания особей, а также случайные колебания, которые происходят в среде со временем и приводят к случайным флуктуациям параметров системы. Поэтому во всякую модель динамики популяций следует вводить вероятностные механизмы, отражающие эти моменты.

Стохастическое моделирование позволяет более полно описать изменения популяционных характеристик с учетом как всех детерминистских факторов, так и случайных эффектов, которые могут существенно изменить выводы из детерминистских моделей. С другой стороны с их помощью можно выявить качественно новые стороны поведения популяции.

Стохастические модели изменения состояний популяции можно описывать с помощью случайных процессов. При некоторых допущениях можно считать, что поведение популяции при условии ее настоящего состояния не зависит от того, каким образом это состояние было достигнуто (т.е. при фиксированном настоящем будущее не зависит от прошлого). Т.о. для моделирования процессов популяционной динамики удобно использовать марковские процессы рождения-гибели и соответствующие управляющие уравнения, которые подробно описаны во второй части работы.

Н. Н. Калинкин в своих работах для иллюстрации процессов происходящих в системах с взаимодействующими элементами использует схемы взаимодействия и на базе этих схем строит модели этих систем используя аппарат ветвящихся марковских процессов. Применение такого подхода иллюстрируется на примере моделирования процессов в химических, популяционных, телекоммуникационных и др. системах.

В работе рассматриваются вероятностные популяционные модели, для построения которых используется аппарат процессов рождения-гибели, а получившиеся системы дифференциально-разностных уравнений представляют собой динамические уравнения для случайных процессов. Также в работе рассмотрены методы нахождения решений данных уравнений.

Можно найти много статей посвященных построению стохастических моделей учитывающих различные факторы влияющие на динамику изменения численности популяций. Так,например, в статьях построена и проанализирована модель динамики численности биологического сообщества, в котором особи потребляют пищевые ресурсы, содержащие вредные вещества. А в модели эволюции популяции в статье учитывается фактор расселения представителей популяций в ареалах их обитания. Модель представляет собой систему самосогласованных уравнений Власова.

Стоит отметить работы , которые посвящены теории флуктуа-ций и применению стохастических методов в естественных науках, таких как физика, химия, биология и др. В частности, математическая модель изменения численности популяций, взаимодействующих по типу «хищник-жертва» строиться на базе многомерных марковских процессов рождения-гибели.

Можно рассматривать модель «хищник–жертва» как реализацию процессов рождения–гибели. В такой трактовке возможно их применение для моде 26 лей во многих областях науки. В 70-е годы М. Дои предложена методика изучения таких моделей на основе операторов рождения–уничтожения (по аналогии со вторичным квантованием). Здесь можно отметить работы . Кроме того сейчас этот метод активно развивается в группе М. М. Гнатича .

Еще один подход к моделированию и изучению моделей популяцион-ной динамики связан с теорией оптимального управления. Здесь можно отметить работы .

Можно отметить, что большинство работ посвященных построению стохастических моделей популяционных процессов использует аппарат случайных процессов для получение дифференциально-разностных уравнений и последующей численной реализации. Кроме того широко применяется стохастические дифференциальные уравнения в форме Ланжевена, в которых стохастический член добавляется из общих соображений о поведении системы и призван описать случайные воздействия окружающей среды . Дальнейшим исследованием модели является их качественный анализ или нахождение решений с помощью численных методов.

Стохастические дифференциальные уравнения Определение 1. Стохастическое дифференциальное уравнение - это дифференциальное уравнение, в котором один член или более представляют собой стохастический процесс. Наиболее используемый и хорошо известный пример стохастического дифференциального уравнения (СДУ) - это уравнение с членом, который описывает белый шум и его можно рассматривать как винеровский процесс Wt, t 0.

Стохастические дифференциальные уравнения являются важным и широко используемым математическим аппаратом при изучении и моделировании динамических систем, которые подвержены различным случайным возмущениям.

Началом стохастического моделирования природных явлений принято считать описание явления броуновского движения, которое открыто Р. Броуном в 1827 году, когда он проводил исследования движения пыльцы растений в жидкости. Первое строгое объяснение этого явления независимо друг от друга дали А. Эйнштейн и М. Смолуховский. Стоит отметить сборник статей в котором собраны работы А. Эйнштейна и М. Смолухов-ского по броуновскому движению. Эти исследования внесли значительный вклад в развитие теории броуновского движения и ее экспериментальную проверку. А. Эйнштейном была создана молекулярно-кинетическая теория для количественного описания броуновского движения. Полученные формулы были подтверждены опытами Ж. Перрена в 1908-1909 гг.

Метод моделирования многомерных одношаговых процессов.

Для описания эволюции систем с взаимодействующими элементами существует два подхода - это построение детерминистической или стохастической моделей. В отличии от детерминистических, стохастические модели позволяют учесть вероятностный характер процессов происходящих в изучаемых системах, а также воздействия внешней среды, которые вызывают случайные флуктуации параметров модели.

Предметом изучения являются системы, процессы происходящие в которых могут быть описаны с помощью одношаговых процессов и таких, в которых переход их одного состояния в другое связан с взаимодействием элементов системы. Примером могут служить модели описывающие динамику роста взаимодействующих популяций, такие как «хищник-жертва», симбиоз, конкуренция и их модификации. Целью является записать для таких систем СДУ и исследовать влияние введения стохастической части на поведение решения уравнения, описывающего детерминистическое поведение.

Химическая кинетика

Системы уравнений, возникающие при описании систем с взаимодействующими элементами, во многом близки системам дифференциальных уравнений, описывающих кинетику химических реакций. Так, например, система Лотки-Вольтерра была первоначально выведена Лоткой как систе 48 ма, описывающая некоторую гипотетическую химическую реакцию, и лишь позже Вольтерра вывел ее как систему, описывающую модель «хищник-жертва».

Химическая кинетика описывает химические реакции с помощью, так называемых стехиометрических уравнений - уравнений отражающих количественные соотношения реагентов и продуктов химической реакции и имеющих следующий общий вид : где натуральные числа ті и Щ называются стехиометрическими коэффициентами. Это символическая запись химической реакции, в которой ті молекул реагента Xi, ni2 молекул реагента Хч, ..., тр молекул реагента Хр, вступив в реакцию образуют щ молекул вещества Уї, щ молекул вещества І2, ..., nq молекул вещества Yq соответственно.

В химической кинетике полагается, что химическая реакция может происходить только при непосредственном взаимодействии реагентов, а скорость химической реакции определяется как число частиц образовавшихся в единицу времени в еденице объема.

Основным постулатом химической кинетики является закон действующих масс, который говорит о том, что скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях их стехиометрических коэффициентов. Поэтому, если обозначить через ХІ и у І концентрации соответствующих веществ, то имеем уравнение для скорости изменения концентрации какого-либо вещества во времени в результате химической реакции :

Далее предлагается использовать основные идеи химической кинетики для описания систем, эволюция во времени которых происходит в результате взаимодействия друг с другом элементов данной системы, внеся следующие основные изменения: 1. рассматриваются не скорости реакций, а вероятности переходов; 2. предлагается, что вероятность перехода из одного состояния в другое, являющегося следствием взаимодействия, пропорциональна числу возможных взаимодействий данного типа; 3. для описания системы в данном методе используется основное кинетическое уравнение; 4. детерминистические уравнения заменяются стохастическими. Подобный подход к описанию таких систем можно найти в работах . Для описания процессов происходящих в моделируемой системе предполагается использовать, как уже отмечалось выше, марковские одношаговые процессы.

Рассмотрим систему состоящую из типов различных элементов, которые могут взаимодействовать между собой различными способами. Обозначим через элемент -того типа, где = 1, а через - количество элементов -того типа.

Пусть (), .

Сделаем предположение, что файл состоит из одной части. Таким образом за один шаг взаимодействия нового узла, желающего скачать файл, и узла, раздающего файл, новый узел скачивает весь файл и становится раздающим узлом.

Пусть - это обозначение нового узла, - это раздающий узел, а - коэффициент взаимодействия. Новые узлы могут приходить в систему с интенсивностью, а раздающие узлы уходить из нее с интенсивностью. Тогда схема взаимодействия и вектор г будет иметь вид:

Стохастическое дифференциальное уравнение в форме Ланжевена мож 100 но получить воспользовавшись соответствующей формулой (1.15). Т.к. вектор сносов A полностью описывает детермистическое поведеие системы можно получить систему обыкновеных дифференциальных уравнений, описывающих динамику численности новых клиентов и сидов:

Таким образом, в зависимости от выбора параметров особая точка может иметь разный характер. Так при /ЗА 4/І2 особая точка является устойчивым фокусом, а при обратном соотношении - устойчивый узел. В обоих случаях особая точка является устойчивой, так как выбора значений коэффициентов, изменения переменных системы может происходить по одной из двух траекторий. Если особая точка является фокусом, то в системе происходят затухающие колебания численностей новых и раздающих узлов (см. рис. 3.12). А в узловом случае приближение численностей к стационарным значениям происходит в бесколебательном режиме (см. рис. 3.13). Фазовые портреты системы для каждого из двух случаев изображены, соответственно, на графиках(3.14) и (3.15).

Стохастическая модель описывает ситуацию, когда присутствует неопределенность. Другими словами, процесс характеризуется некоторой степенью случайности. Само прилагательное «стохастический» происходит от греческого слова «угадывать». Поскольку неопределенность является ключевой характеристикой повседневной жизни, то такая модель может описывать все что угодно.

Однако каждый раз, когда мы ее применяем, будет получаться разный результат. Поэтому чаще используются детерминированные модели. Хотя они и не являются максимально приближенными к реальному положению вещей, однако всегда дают одинаковый результат и позволяют облегчить понимание ситуации, упрощают ее, вводя комплекс математических уравнений.

Основные признаки

Стохастическая модель всегда включает одну или несколько случайных величин. Она стремится отразить реальную жизнь во всех ее проявлениях. В отличие от стохастическая не имеет цели все упростить и свести к известным величинам. Поэтому неопределенность является ее ключевой характеристикой. Стохастические модели подходят для описания чего угодно, но все они имеют следующие общие признаки:

  • Любая стохастическая модель отражает все аспекты проблемы, для изучения которой создана.
  • Исход каждого из явлений является неопределенным. Поэтому модель включает вероятности. От точности их расчета зависит правильность общих результатов.
  • Эти вероятности можно использовать для прогнозирования или описания самих процессов.

Детерминированные и стохастические модели

Для некоторых жизнь представляется чередой для других - процессов, в которых причина обуславливает следствие. На самом же деле для нее характерна неопределенность, но не всегда и не во всем. Поэтому иногда трудно найти четкие различия между стохастическими и детерминированными моделями. Вероятности являются достаточно субъективным показателем.

Например, рассмотрим ситуацию с подбрасыванием монетки. На первый взгляд кажется, что вероятность того, что выпадет «решка», составляет 50%. Поэтому нужно использовать детерминированную модель. Однако на деле оказывается, что многое зависит от ловкости рук игроков и совершенства балансировки монетки. Это означает, что нужно использовать стохастическую модель. Всегда есть параметры, которые мы не знаем. В реальной жизни причина всегда обуславливает следствие, но существует и некоторая степень неопределенности. Выбор между использованием детерминированной и стохастической моделей зависит от того, чем мы готовы поступиться - простотой анализа или реалистичностью.

В теории хаоса

В последнее время понятие о том, какая модель называется стохастической, стало еще более размытым. Это связано с развитием так называемой теории хаоса. Она описывает детерминированные модели, которые могут давать разные результаты при незначительном изменении исходных параметров. Это похоже на введение в расчет неопределенности. Многие ученые даже допустили, что это уже и есть стохастическая модель.

Лотар Брейер изящно объяснил все с помощью поэтических образов. Он писал: «Горный ручеек, бьющееся сердце, эпидемия оспы, столб восходящего дыма - все это является примером динамического феномена, который, как кажется, иногда характеризуется случайностью. В реальности же такие процессы всегда подчинены определенному порядку, который ученые и инженеры еще только начинают понимать. Это так называемый детерминированный хаос». Новая теория звучит очень правдоподобно, поэтому многие современные ученые являются ее сторонниками. Однако она все еще остается мало разработанной, и ее достаточно сложно применить в статистических расчетах. Поэтому зачастую используются стохастические или детерминированные модели.

Построение

Стохастическая начинается с выбора пространства элементарных исходов. Так в статистике называют перечень возможных результатов изучаемого процесса или события. Затем исследователь определяет вероятность каждого из элементарных исходов. Обычно это делается на основе определенной методики.

Однако вероятности все равно являются достаточно субъективным параметром. Затем исследователь определяет, какие события представляются наиболее интересными для решения проблемы. После этого он просто определяет их вероятность.

Пример

Рассмотрим процесс построения самой простой стохастической модели. Предположим, мы кидаем кубик. Если выпадет «шесть» или «один», то наш выигрыш составит десять долларов. Процесс построения стохастической модели в этом случае будет выглядеть следующим образом:

  • Определим пространство элементарных исходов. У кубика шесть граней, поэтому могут выпасть «один», «два», «три», «четыре», «пять» и «шесть».
  • Вероятность каждого из исходов будет равна 1/6, сколько бы мы ни подбрасывали кубик.
  • Теперь нужно определить интересующие нас исходы. Это выпадение грани с цифрой «шесть» или «один».
  • Наконец, мы может определить вероятность интересующего нас события. Она составляет 1/3. Мы суммируем вероятности обоих интересующих нас элементарных событий: 1/6 + 1/6 = 2/6 = 1/3.

Концепция и результат

Стохастическое моделирование часто используется в азартных играх. Но незаменимо оно и в экономическом прогнозировании, так как позволяют глубже, чем детерминированные, понять ситуацию. Стохастические модели в экономике часто используются при принятии инвестиционных решений. Они позволяют сделать предположения о рентабельности вложений в определенные активы или их группы.

Моделирование делает финансовое планирование более эффективным. С его помощью инвесторы и трейдеры оптимизируют распределение своих активов. Использование стохастического моделирования всегда имеет преимущества в долгосрочной перспективе. В некоторых отраслях отказ или неумение его применять может даже привести к банкротству предприятия. Это связано с тем, что в реальной жизни новые важные параметры появляются ежедневно, и если их не может иметь катастрофические последствия.