Чему равна условная вероятность события a. Условные вероятности

Все теоремы и формулы теории вероятностей и математической статистики выводятся из аксиом теории вероятностей. В этой главе дается определение условной вероятности, доказываются наиболее часто используемые теоремы и формулы, основанные на условных вероятностях. Вводится понятие независимости событий, которое затем используется в схеме последовательных независимых испытаний, а также дается описание марковской схемы с зависимыми испытаниями.

УСЛОВНЫЕ ВЕРОЯТНОСТИ

В § 1.1 формула условной вероятности была выведена для классической схемы. В общем случае эта формула служит определением условной вероятности события А при условии, что произошло событие В , Р(В) > 0.

Определение 2.1. Условная вероятность события А при условии В

Определение 2.2. Событие А не зависит от события В, если

Независимость событий взаимна, т.е. если событие А не зависит от В, то и событие В не зависит от А. В самом деле, используя определения 2.1 и 2.2, при Р(А) > 0 имеем:

Из определения 2.1 вытекает следующая формула умножения вероятностей:

Для независимых событий вероятность произведения событий равна произведению их вероятностей:

Определение 2.3. События А, А 2 ,..., А„ образуют полную группу событий, если они попарно несовместны и вместе образуют достоверное событие, т.е.

Имеет место следующая теорема полной вероятности.

Теорема 2.1. Если события А и ..., А„, Р(А) > 0 образуют полную группу событий, то вероятность события В может быть представлена как сумма произведений безусловных вероятностей событий полной группы на условные вероятности события В:

События полной группы А„ ..., А„ попарно несовместны, поэтому попарно несовместны и их произведения (пересечения) с событием В, т.е. события В П А/, В П Л, при i Ф j несовместны. Так как событие В можно представить в виде

то, применив к этому разложению события В аксиому сложения вероятностей, имеем:

Используя формулу умножения вероятностей (2.1.1) для каждого слагаемого, окончательно получаем:

Требование, состоящее в том, что события Л, образуют полную группу событий, может быть заменено более слабым: события попар-

но не пересекаются, Bcz^A r Кроме того, на основе аксиомы счет-

ной аддитивности теорему полной вероятности можно распространить и на счетное множество попарно непересекающихся событий А,-,

Р(А,)> 0, tfcQ/l, :

Из формулы полной вероятности (2.1.3) легко получить формулу Байеса: для события В с Р(В) > 0 и для системы попарно несовмест-

пых событий А„ Р(Л,) > 0,BczJ А,.,


В самом деле, применив формулы условной вероятности и умножения вероятностей, имеем:

теперь, заменив вероятность события В по формуле полной вероятности, получаем формулу (2.1.5).

Вероятности Р(А,) событий И, называют априорными вероятностями, т.е. вероятностями событий до выполнения опыта, а условные вероятности этих событий Р(А,!В) - апостериорными, т.е. уточненными в результате опыта, исходом которого послужило появление события В.

Пример 2.1. Расчет по формула и полной вероятности и Байеса

На предприятии изготовляются изделия определенного вида на трех поточных линиях. На первой линии производится 20% изделий от всего объема их производства, на второй - 30%, на третьей - 50%. Каждая из линий характеризуется соответственно следующими процентами годности изделий: 95, 98 и 97%. Требуется определить вероятность того, что наугад взятое изделие, выпущенное предприятием, окажется бракованным, а также вероятности того, что это бракованное изделие сделано на первой, второй и третьей линиях.

Решение. Обозначим через А„ Л 2 , А } события, состоящие в том, что наугад взятое изделие произведено соответственно на первой, второй и третьей линиях. Согласно условиям задачи Р(А ,) = 0,2; Р(А 2) = 0,3; Р(А }) = 0,5, и эти события образуют полную группу событий, поскольку они попарно несовместны, т.е. Р(А ,) + Р(Л 2) + Р(Л 3) = 1.

Обозначим через В событие, состоящее в том, что наугад взятое изделие оказалось бракованным. Согласно условиям задачи P(B/A t) = = 0,05; Р(В/А 2) = 0,02; Р(В/А 3) = 0,03.

т.е. вероятность того, что наугад взятое изделие окажется бракованным, равна 3,1%.

Априорные вероятности того, что наугад взятое изделие изготовлено на первой, второй или третьей линии, равны соответственно 0,2; 0,3 и 0,5.

Допустим, что в результате опыта наугад взятое изделие оказалось бракованным; определим теперь апостериорные вероятности того, что это изделие изготовлено на первой, второй или третьей линиях. По формуле Байеса имеем:

Таким образом, вероятности того, что наугад взятое и оказавшееся бракованным изделие изготовлено на первой, второй или третьей линии, равны соответственно 0,322; 0,194; 0,484.

Формула умножения вероятностей (2.1.1) может быть распространена на случай произвольного конечного числа событий:

Определение 2.4. События А ь А 2 , ..., А„ независимы в совокупности, если для любого их подмножества

Если это условие выполнено только для к = 2, то события попарно независимы.

Из независимости событий в совокупности вытекает попарная независимость, а из попарной независимости не следует независимость в совокупности.

Событие. Пространство элементарных событий. Достоверное событие, невозможное событие. Совместные, несовместные события. Равновозможные события. Полная группа событий. Операции над событиями.

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события.

Под элементарными событиями , связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий.

Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями.

Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E).

Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное.

Два события называются совместными (совместимыми) в данном опыте, если появление одного из них не исключает появления другого.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны.

Начало формы

Конец формы

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события. События обозначаются большими буквами латинского алфавита A, B, C,... Любое событие происходит вследствие испытания . Например, подбрасываем монету - испытание, появление герба - событие; достаем лампу из коробки - испытание, она бракованная - событие; вынимаем наугад шарик из ящика - испытание, шарик оказался черного цвета - событие. Случайным событием называется событие, которое может произойти или не произойти во время данного испытания. Например, вынимая наугад одну карту из колоды, вы взяли туз; стреляя, стрелок попадает в цель. Теория вероятности изучает только массовые случайные события. Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E). Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное. Равновозможные события - это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще другого во время многочисленных испытаний, которые проводятся с одинаковыми условиями. Попарно несовместимые события - это события, два из которых не могут произойти вместе. Вероятность случайного события - это отношение числа событий, которые благоприятствуют этому событию, к общему числу всех равновозможных несовместимых событий: P(A) = где A - событие; P(A) - вероятность события; N - общее число равновозможных и несовместимых событий; N(A) - число событий, которые благоприятствуют событию A. Это - классическое определение вероятности случайного события. Классическое определение вероятности имеет место для испытаний с конечным числом равновозможных результатов испытания. Пусть сделано n выстрелов по мишени, из которых оказалось m попаданий. Отношение W(A) = называется относительной статистической частотой наступления события A. Следовательно, W(A) - статистическая частота попадания.

При проведении серии выстрелов (табл.1) статистическая частота будет колебаться около определенного постоянного числа. Это число целесообразно принять за оценку вероятности попадания.

Вероятностью события A называется то неизвестное число P, около которого собираются значения статистических частот наступления события A при возрастании числа испытаний.

Это - статистическое обозначение вероятности случайного события.

Операции над событиями
Под элементарными событиями, связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий. Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями. Все известные отношения и операции над множествами переносятся на события. Говорят, что событие A является частным случаем события B (или B является результатом A), если множество A является подмножеством B. Обозначают это отношение так же, как для множеств: A ⊂ B или B ⊃ A. Таким образом, отношение A ⊂ B означает, что все элементарные события, входящие в A, входят также в B, то есть при наступлении события A наступает также событие B. При этом, если A ⊂ B и B ⊂ A, то A = B. Событие A, которое происходит тогда и только тогда, когда событие A не происходит, называется противоположным событию A. Поскольку в каждом испытании происходит одно и только одно из событий - A или A, то P(A) + P(A) = 1, или P(A) = 1 − P(A). Объединением или суммой событий A и B называется событие C, которое происходит тогда и только тогда, когда или происходит событие A, или происходит событие B, или происходят A и B одновременно. Это обозначается C = A ∪ B или C = A + B. Объединением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий. Обозначается объединение событий A 1 ∪ A 2 ∪ ... ∪ A n , или A k , или A 1 + A 2 + ... + A n . Пересечением или произведением событий A и B называется событие D, которое происходит тогда и только тогда, когда события A и B происходят одновременно, и обозначается D = A ∩ B или D = A × B. Совмещением или произведением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит и событие A 1 , и событие A 2 , и т.д., и событие A n . Обозначается совмещение так: A 1 ∩ A 2 ∩ ... ∩ A n или A k , или A 1 × A 2 × ... × A n .

Тема № 2 . Аксиоматическое определение вероятности. Классическое, статистическое, геометрическое определение вероятности события. Свойства вероятности. Теоремы сложения и умножения вероятностей. Независимые события. Условная вероятность. Вероятность наступления хотя бы одного из событий. Формула полной вероятности. Формула Байеса

Численная мера степени объективной возможности наступления события называется вероятностью события. Это определение, качественно отражающее понятие вероятности события, не является математическим. Чтобы оно стало таким, необходимо определить его качественно.

Согласно классическому определению вероятность события А равна отношению числа случаев, благоприятствующих ему, к общему числу случаев, то есть:

Где P(A) – вероятность события А.

Число случаев благоприятствующих событию А

Общее число случаев.

Статистическое определение вероятности:

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях, то есть:

Где - статистическая вероятность события А.

Относительная частота(частость) события А.

Число испытаний, в которых появилось события A

Общее число испытаний.

В отличие от «математической» вероятности , рассматриваемой в классическом определении, статистическая вероятность является характеристикой опытной, экспериментальной.

Если есть доля случаев, благоприятствующих событию А, которая определяется непосредственно, без каких-либо испытаний, то есть доля тех фактически произведённых испытаний, в которых событие А появилось.

Геометрическое определение вероятности:

Геометрической вероятностью события А называется отношение меры области благоприятствующей появлению события А, к мере всех области, то есть:

В одномерном случае:


Следует оценить вероятность попадания точки на CD/

Оказывается эта вероятность не зависит от места нахождения CD на отрезке АВ, а зависит лишь от его длины.


Вероятность попадания точки не зависит ни от форм, ни от месте нахождения В на А, а зависит лишь от площади данного сегмента.

Условная вероятность

Вероятность называется условной , если она вычисляется при определённых условиях и обозначается:

Это вероятность события А. Вычисляется при условии, что событие В уже произошло.

Пример. Производим испытание, извлекаем две карты из колоды: Первая вероятность является безусловной.

Вычисляем вероятность извлечения туза из колоды:

Вычисляем появление 2-тузув из колоды:

А*В – совместное появление событий

теорема умножения вероятностей

Следствие:

Теорема умножения для совместного появления событий имеет вид:

То есть каждая последующая вероятность вычисляется с тем учётом, что все предыдущие условия уже произошли.

Независимость события:

Независимыми называются 2 события, если появление одного не противоречит появлению другого.

Например, если тузы из колоды извлекаются повторно, тогда они между собой независимы. Повторно, то есть карту посмотрели и вернули обратно в колоду.

Совместные и несовместные события:

Совместными называются 2 события, если появление одного из них не противоречит появлению другого.

Теорема сложения вероятностей совместных событий:

Вероятность появления одного из двух совместных событий равна сумме вероятностей этих событий без их совместного появления.

Для трёх совместных событий:

Несовместными называются события, если никакие два из них не могут появиться одновременно в результате однократного испытания случайного эксперимента.

Теорема: Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

Вероятность суммы событий:

Теорема сложения вероятностей:

Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:

Следствие 1:

Сумма вероятностей событий, образующих полную группу равна единице:

Следствие 2:

Замечание: Следует подчеркнуть, что рассмотренная теорема сложения применима только для несовместных событий.

Вероятность противоположных событий:

Противоположными называются два единственно возможных события, образующих полную группу. Одно из двух противоположных событий обозначено через А , другое – через .

Пример: Попадание и промах при выстреле по цели – противоположные события. Если A – попадание, то – промах.

Теорема: Сумма вероятностей противоположных событий равна единице:

Замечание 1: Если вероятность одного из двух противоположных событий обозначена через p, то вероятность другого события обозначают через q Таким образом, в силу предыдущей теоремы:

Замечание 2: При решении задач на отыскание вероятности события A часто выгодно сначала вычислить вероятность события , а затем найти искомую вероятность по формуле:

Вероятность появления хотя бы одного события:

Допустим, что в результате эксперимента может появиться одно, какая-то часть или ни одно событие.

Теорема: Вероятность появления хотя бы одного события из совокупности независимых событий равна разности между единицей и их вероятностью не появления событий .

Определение 1. Событие А называется зависимым от события В, если вероятность появления события А зависит от того, произошло или не произошло событие В. Вероятность того, что произошло событие А при условии, что произошло событие В, будем обозначать и называть условной вероятностью события А при условии В.

Пример 1. В урне находится 3 белых шара и 2 черных. Из урны вынимается один шар (первое вынимание), а затем второй (второе вынимание). Событие В - появление белого шара при первом вынимании. Событие А - появление белого шара при втором вынимании.

Очевидно, что вероятность события А, если событие В произошло, будет

Вероятность события Л при условии, что событие В не произошло (при первом вынимании появился черный шар), будет

Видим, что

Теорема 1. Вероятность совмещения двух событий равняется произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т. е.

Доказательство. Доказательство приведем для событий, которые сводятся к схеме урн (т. е. в случае, когда применимо классическое определение вероятности).

Пусть в урне шаров, при этом белых, черных. Пусть среди белых шаров шаров с отметкой «звездочка», остальные чисто белые (рис. 408).

Из урны вынимается один шар. Какова вероятность события вынуть белый шар с отметкой «звездочка»?

Пусть В - событие, состоящее в появлении (белого шара, А - событие, состоящее в появлении шара с отметкой «звездочка». Очевидно,

Вероятность появления белого шара со «звездочкой при условии, что появился белый шар, будет

Вероятность появления белого шара со «звездочкой» есть Р (А и В). Очевидно,

Подставляя в (5) левые части выражений (2), (3) и (4), получаем

Равенство (1) доказано.

Если рассматриваемые события не укладываются в классическую - схему, то формула (1) служит для определения условной вероятности. А именно, условная вероятность события А при условии осуществления события В опрёделяется с помощью

Замечание 1. Применим последнюю формулу к выражению :

В равенствах (1) и (6) левые части равны, так как это одна и та же вероятность, следовательно, равны и правые. Поэтому можем написать равенство

Пример 2. Для случая примера 1, приведенного в начале этого параграфа, имеем По формуле (1) получаем Вероятность Р(А и В) легко вычисляется и непосредственно.

Пример 3. Вероятность изготовления годного изделия данным станком равна 0,9. Вероятность появления изделия 1-го сорта среди годных изделии есть 0,8. Определить вероятность изготовления изделия 1-го сорта данным станком.

Решение. Событие В - изготовление годного изделия данным станком, событие А - появление изделия 1-го сорта. Здесь Подставляя в формулу (1), получаем искомую вероятность

Теорема 2. Если событие А может осуществиться только при выполнении одного из событий которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

Формулд (8) называется формулой полной вероятности. Доказательство. Событие А может произойти при выполнении любого из совмещенных событий

Следовательно, по теореме о сложение вероятностей получаем

Заменяя слагаемые правой части по формуле (1), получим равенство (8).

Пример 4. По цели произведено три последовательных выстрела. Вероятность попадания при первом выстреле при втором при третьем При одном попадании вероятность поражения цели при двух попаданиях , при трех попаданиях Определить вероятность пфаженйя цели при трех выстрелах (событие А).

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Рассмотрим события A и B , связанные с одним и тем же опытом. Пусть из каких-то источников стало известно, что событие B наступило, но неизвестно, какой конкретно из элементарных исходов, составляющих событие B , произошел. Что можно сказать в этом случае о вероятности события A ?

Вероятность события A , вычисленную в предположении, что событие B произошло, принято называть условной вероятностью и обозначать P(A|B) .

Условную вероятность P(A|B) события A при условии события B в рамках классической схемы вероятности естественно определить как отношение N AB исходов, благоприятствующих совместному осуществлению событий A и B , к числу N B исходов, благоприятствующих событию B , то есть

Если поделить числитель и знаменатель этого выражения на общее число N элементарных исходов, то получим

Определение . Условной вероятностью события A при условии наступления события B называют отношение вероятности пересечения событий A и B к вероятности события B :

При этом предполагают, что P(B) ≠ 0 .

Теорема . Условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности P(A) .

Смысл этой теоремы заключается в том, что условная вероятность представляет собой безусловную вероятность, заданную на новом пространстве Ω 1 элементарных исходов, совпадающем с событием B .

Пример . Из урны, в которой a=7 белых и b=3 черных шаров, наугад без возвращения извлекают два шара. Пусть событие A 1 состоит в том, что первый извлеченный шар является белым, а A 2 - белым является второй шар. Требуется найти P(A 2 |A 1) .

Способ 1. . По определению условной вероятности

Способ 2. . Перейдем к новому пространству элементарных исходов Ω 1 . Так как событие A 1 произошло, то это означает, что в новом пространстве элементарных исходов всего равновозможных исходов N Ω 1 =a+b-1=9 , а событию A 2 благоприятствует при этом N A 2 =a-1=6 исходов. Следовательно,

Теорема [умножения вероятностей] . Пусть событие A=A 1 A 2 …A n и P(A)>0 . Тогда справедливо равенство:

P(A) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) … P(A n |A 1 A 2 …A n-1) .

Замечание . Из свойства коммутативности пересечения можно писать

P(A 1 A 2) = P(A 1) P(A 2 |A 1)

P(A 1 A 2) = P(A 2) P(A 1 |A 2) .

Пример . На 7 карточках написаны буквы, образующие слово «СОЛОВЕЙ». Карточки перемешивают и из них наугад последовательно извлекают и выкладывают слева направо три карточки. Найти вероятность того, что получится слово «ВОЛ» (событие A ).

Пусть событие A 1 - на первой карточке написана буква «В», A 2 - на второй карточке написана буква «О», A 2 - на третьей карточке - буква «Л». Тогда событие A - пересечение событий A 1 , A 2 , A 3 . Следовательно,

P(A) = P(A 1 A 2 A 3) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) .

P(A 1)=1/7 ; если событие A 1 произошло, то на оставшихся 6 карточках «О» встречается два раза, значит P(A 2 |A 1)=2/6=1/3 . Аналогично, P(A 3 |A 1)=2/6=1/3 . Следовательно,

Определение . События A и B , имеющие ненулевую вероятность, называют независимыми, если условная вероятность A при условии B совпадает с безусловной вероятностью A или если условная вероятность B при условии A совпадает с безусловной вероятностью B , то есть

P(A|B) = P(A) или P(B|A) = P(B) ,

в противном случае события A и B называют зависимыми.

Теорема . События A и B , имеющие ненулевую вероятность, являются независимыми тогда и только тогда, когда

P(AB) = P(A) P(B) .

Таким образом, можно дать эквивалентное определение:

Определение . События A и B называют независимыми, если P(AB) = P(A) P(B) .

Пример . Из колоды карт, содержащей n=36 карт, наугад извлекают одну карту. Обозначим через A событие, соответствующее тому, что извлеченная карта будет пиковой, а B - событие, соответствующее появлению «дамы». Определим являются ли зависимыми события A и B .

P(A)=9/36=1/4 , P(B)=4/36=19 , P(AB)=1/36 , . Следовательно, события A и B независимы. Аналогично, .