Выборка
Выборка или выборочная совокупность - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Характеристики выборки:
- Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.
- Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.
Необходимость выборки
- Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.
- Существует необходимость в сборе первичной информации.
Объём выборки
Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30-35.
Зависимые и независимые выборки
При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми . Примеры зависимых выборок:
- пары близнецов,
- два измерения какого-либо признака до и после экспериментального воздействия,
- мужья и жёны
- и т. п.
В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми , например:
Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.
Сравнение выборок производится с помощью различных статистических критериев:
- и др.
Репрезентативность
Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.
Пример нерепрезентативной выборки
- Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия.
- Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора
- Исследование с использованием только одной группы - экспериментальной.
- Исследование с использованием смешанного (факторного) плана - все группы ставятся в разные условия.
Типы выборки
Выборки делятся на два типа:
- вероятностные
- невероятностные
Вероятностные выборки
- Простая вероятностная выборка:
- Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.
Процедура построения простой случайной выборки включает в себя следующие шаги:
1. необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;
2. определить предполагаемый объем выборки, то есть ожидаемое число опрошенных;
3. извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.
4. выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам
- Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения:
1. зачастую сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.
2. результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.
3. результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.
4. в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки.
- Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.
- Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина К определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.
- Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т. п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.
- Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.
- «Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки - с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.
Невероятностные выборки
Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д.
- Квотная выборка – выборка строится как модель, которая воспроизводит структуру генеральной совокупности в виде квот (пропорций) изучаемых признаков. Число элементов выборки с различным сочетанием изучаемых признаков определяется с таким расчётом, чтобы оно соответствовало их доле (пропорции) в генеральной совокупности. Так, например, если генеральная совокупность у нас представлена 5000 человек, из них 2000 женщин и 3000 мужчин, тогда в квотной выборке у нас будут 20 женщин и 30 мужчин, либо 200 женщин и 300 мужчин. Квотированные выборки чаще всего основываются на демографических критериях: пол, возраст, регион, доход, образование и прочих. Минусы: обычно такие выборки нерепрезентативны, т.к. нельзя учесть сразу несколько социальных параметров. Плюсы: легкодоступный материал.
- Метод снежного кома. Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)
- Стихийная выборка – выборка так называемого «первого встречного». Часто используется в теле- и радиоопросах. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов. Минусы: невозможно установить какую генеральную совокупность представляют опрошенные, и как следствие – невозможность определить репрезентативность.
- Маршрутный опрос – часто используется, если единицей изучения является семья. На карте населённого пункта, в котором будет производиться опрос, нумеруются все улицы. С помощью таблицы (генератора) случайных чисел отбираются большие числа. Каждое большое число рассматривается как состоящее из 3-х компонентов: номер улицы (2-3 первых числа), номер дома, номер квартиры. Например, число 14832: 14 – это номер улицы на карте, 8 – номер дома, 32 – номер квартиры.
- Районированная выборка с отбором типичных объектов. Если после районирования из каждой группы отбирается типичный объект, т.е. объект, который по большинству изучаемых в исследовании характеристик приближается к средним показателям, такая выборка называется районированной с отбором типичных объектов.
6.Модальная выборка. 7.экспертная выборка. 8.Гетерогенная выборка.
Стратегии построения групп
Отбор групп для их участия в психологическом эксперименте осуществляется с помощью различных стратегий, которые нужны для того, чтобы обеспечить максимально возможное соблюдение внутренней и внешней валидности .
Рандомизация
Рандомизация , или случайный отбор , используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза , можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек - это будет случайным отбором (Гудвин Дж., с. 147).
Попарный отбор
Попарный отбор - стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом - привлечением близнецовых пар (моно- и дизиготных), так как позволяет создать...
Стратометрический отбор
Стратометрический отбор - рандомизация с выделением страт (или кластеров). При данном способе формирования выборки генеральная совокупность делится на группы (страты), обладающие определёнными характеристиками (пол , возраст , политические предпочтения, образование , уровень доходов и др.), и отбираются испытуемые с соответствующими характеристиками.
Приближённое моделирование
Приближённое моделирование - составление ограниченных выборок и обобщение выводов об этой выборке на более широкую популяцию. Например, при участии в исследовании студентов 2-го курса университета, данные этого исследования распространяются на «людей в возрасте от 17 до 21 года». Допустимость подобных обобщений крайне ограничена.
Приближенное моделирование – формирование модели, которая для четко оговоренного класса систем (процессов) описывает его поведение (или нужные явления) с приемлемой точностью.
Примечания
Литература
Наследов А. Д. Математические методы психологического исследования. - СПб.: Речь, 2004.
- Ильясов Ф. Н. Репрезентативность результатов опроса в маркетинговом исследовании // Социологические исследования. 2011. № 3. С. 112-116.
См. также
- В некоторых типах исследований выборку делят на группы:
- экспериментальная
- контрольная
- Когорта
Ссылки
- Понятие выборки. Основные характеристики выборки. Типы выборки
Wikimedia Foundation . 2010 .
Синонимы :- Щепкин, Михаил Семёнович
- Генеральная совокупность
Смотреть что такое "Выборка" в других словарях:
выборка - группа испытуемых, представляющих определенную популяцию и отобранных для эксперимента или исследования. Противоположное понятие совокупность генеральная. Выборка есть часть совокупности генеральной. Словарь практического психолога. М.: АСТ,… … Большая психологическая энциклопедия
выборка - выборка Часть генеральной совокупности элементов, которая охватывается наблюдением (часто ее называют выборочной совокупностью, а выборкой — сам метод выборочного наблюдения). В математической статистике принят… … Справочник технического переводчика
Выборка - (sample) 1. Небольшое количество товара, отобранное, чтобы представлять все его количество. См.: продажа по образцу (sale by sample). 2. Небольшое количество товара, переданное потенциальным покупателям, чтобы дать им возможность провести его… … Словарь бизнес-терминов
Выборка - часть генеральной совокупности элементов, которая охватывается наблюдением (часто ее называют выборочной совокупностью, а выборкой сам метод выборочного наблюдения). В математической статистике принят принцип случайного отбора; это… … Экономико-математический словарь
ВЫБОРКА - (sample) Произвольный отбор подгруппы элементов из основной совокупности, характеристики которых используются для оценки всей совокупности в целом. Выборочный метод используется, когда слишком долго или слишком дорого обследовать всю совокупность … Экономический словарь
Часто бывает так, что необходимо проанализировать какое-либо конкретное социальное явление и получить информацию о нем. Такие задания часто возникают в ста...
Выборка - это... Определение, виды, методы и результаты выборки
От Masterweb
09.04.2018 16:00Часто бывает так, что необходимо проанализировать какое-либо конкретное социальное явление и получить информацию о нем. Такие задания часто возникают в статистике и при статистических исследованиях. Проверить полностью определенное социальное явление чаще всего бывает невозможным. Например, как узнать мнение населения или всех жителей определенного города по какому-либо вопросу? Спрашивать абсолютно всех – дело практически невозможное и очень трудоемкое. В таких случаях нам и необходима выборка. Это именно то понятие, на котором основаны практически все исследования и анализы.
Что такое выборка
При анализе конкретного социального явления необходимо получить информацию о нем. Если взять любое исследование, то можно заметить, что исследованию и анализу подлежит не каждая единица совокупности объекта исследования. Во внимание берется только определенная часть всей этой совокупности. Вот этот процесс и является выборкой: когда исследуются только определенные единицы из множества.
Конечно же, многое зависит от вида выборки. Но есть и основные правила. Главное из них гласит, что отбор из совокупности должен быть абсолютно случайным. Единицы совокупности, которые будут использованы, не должны быть выбраны из-за какого-либо критерия. Грубо говоря, если необходимо набрать совокупность из населения определенного города и отобрать только мужчин, то в исследовании будет ошибка, потому что отбор был проведен не случайно, а отобран по гендерному признаку. Практически все методы выборки основаны на этом правиле.
Правила выборки
Для того чтобы отобранная совокупность отражала основные качества всего явления, она должна быть построена по конкретным законам, где основное внимание необходимо уделять следующим категориям:
- выборка (выборочная совокупность);
- генеральная совокупность;
- репрезентативность;
- ошибка репрезентативности;
- единица совокупности;
- способы построения выборки.
Особенности выборочного наблюдения и составления выборки заключаются в следующем:
- Все полученные результаты основаны на математических законах и правилах, то есть при правильном проведении исследования и при правильных расчетах результаты не будут искажены по субъективному признаку
- Дает возможность значительно быстрее и с меньшими затратами времени и ресурсов получить результат, изучая не весь массив событий, а только их часть.
- Может быть применено для изучения различных объектов: от конкретных вопросов, например, возраст, пол интересующей нас группы, к изучению общественного мнения или уровня материального обеспечения населения.
Выборочное наблюдение
Выборочное - это такое статистическое наблюдение, при котором исследованию подвергается не вся совокупность изучаемого, а лишь некоторая, отобранная определенным образом ее часть, а полученные результаты изучения этой части распространяются на всю совокупность. Эта часть называется выборочной совокупностью. Это единственный способ изучения большого массива объекта исследования.
Но выборочное наблюдение может использоваться только в тех случаях, когда необходимо исследовать лишь малую группу единиц. Например, при исследовании соотношения мужчин к женщинам в мире, будет использоваться выборочное наблюдение. По понятным причинам – взять во внимание каждого жителя нашей планеты невозможно.
А вот при таком же исследовании, но не всех жителей земли, а определенного 2 «А» класса в конкретной школе, определенного города, определенной страны, может обойтись без выборочного наблюдения. Ведь проанализировать весь массив объекта исследования – вполне возможно. Необходимо посчитать мальчиков и девочек этого класса - вот и будет соотношение.
Выборочная и генеральная совокупность
На самом деле все не так сложно, как звучит. В любом объекте изучения есть две системы: генеральная и выборочная совокупность. Что же это такое? Все единицы относятся к генеральной. А к выборочной – те единицы общей совокупности, которые были взяты для выборки. Если все правильно сделано, то отобранная часть будет составлять уменьшенный макет всей (генеральной) совокупности.
Если говорить о генеральной совокупности, то можно выделить всего две ее разновидности: определенная и неопределенная генеральная совокупность. Зависит от того, известно ли общее количество единиц данной системы или нет. Если это определенная генеральная совокупность, то выборку будет делать легче из-за того, что известно, какой процент от общего количества единиц будет составлять выборка.
Этот момент очень необходим в исследованиях. Например, если необходимо исследовать процент недоброкачественной продукции кондитерских изделий на конкретном заводе. Допустим, что генеральная совокупность уже определена. Точно известно, что в год это предприятие производит 1000 кондитерских изделий. Если сделать выборку 100 случайных кондитерских изделий из этой тысячи и отправить их на экспертизу, то погрешность будет минимальной. Грубо говоря, исследованию подлежало 10 % всей продукции, и по результатам можем, приняв во внимание ошибку репрезентативности, говорить о недоброкачественности всей продукции.
А если провести выборку 100 кондитерских изделий из неопределенной генеральной совокупности, где их на самом деле было, допустим, 1 млн единиц, то результат выборки и самого исследования будет критически неправдоподобным и неточным. Чувствуете разницу? Поэтому определенность генеральной совокупности в большинстве случаев крайне важна и очень сильно влияет на результат исследования.
Репрезентативность совокупности
Итак, теперь один из самых главных вопросов - какой должна быть выборка? Это самый главный момент исследования. На этом этапе необходимо рассчитать выборку и отобрать единицы из общего числа в нее. Совокупность была отобрана правильно, если определенные особенности и характеристики генеральной совокупности остается и в выборочной. Это называется репрезентативностью.
Иными словами, если после отбора часть сохраняет те же самые тенденции и особенности что и все количество исследуемого, то такая совокупность называется репрезентативной. Но не каждая определенная выборка может быть отобрана из репрезентативной совокупности. Бывают и такие объекты исследования, выборка которых просто не может быть репрезентативной. Отсюда и возникает понятие ошибки репрезентативности. Но об этом поговорим подробнее чуть больше.
Как сделать выборку
Итак, чтобы репрезентативность была максимальной, выделяют три основные правила выборки:
- Самым уникальным показателем числа выборки считается 20 %. Статистическая выборка в 20 % будет практически всегда давать результат максимально приближенный к действительности. В то же самое время нет необходимости переносить в собранную большую часть генеральной совокупности. 20 % выборки – это тот показатель, который выработан многими исследованиями. Приведем еще немного теории. Чем больше выборка, тем меньше ошибка репрезентативности и точнее результат исследования. Чем ближе будет выборочная совокупность к генеральной по количеству единиц, тем более точными и правильными будут результаты. Ведь если исследовать всю систему, тогда результат будет 100 %. Но здесь уже нет выборки. Это те исследования, в которых исследуется весь массив, все единицы, поэтому это нас не интересует.
- В случае нецелесообразности обработки 20 % генеральной совокупности допускается изучение единиц совокупности в количестве не менее 1001. Это также один из показателей исследования массива объекта исследования, который выработался со временем. Конечно же, он не даст точных результатов при больших массивах исследования, но максимально приблизит к возможной точности выборки.
- В статистике существует множество формул и сведенных таблиц. В зависимости от объекта исследования и от критерия выборки, существует целесообразность выбора той или иной формулы. Но этот пункт используется в сложных и многоэтапных исследованиях.
Погрешность (ошибка) репрезентативности
Главной характеристикой качества выбранной выборки является понятие «погрешности репрезентативности». Что же это такое? Это определенные расхождения между показателями выборочного и сплошного наблюдения. По показателям погрешности репрезентативность делят на надежную, обычную и приближенную. Иначе говоря, допустимыми являются отклонения в размере до 3 %, от 3 до 10 % и от 10 до 20 % соответственно. Хотя в статистике желательно, чтобы погрешность не превышал 5-6 %. В противном случае есть повод говорить о недостаточной репрезентативности выборки. Для вычисления погрешности репрезентативности и того, как она влияет на выборочную или генеральную совокупность, во внимание берутся многие факторы:
- Вероятность, с которой необходимо получить точный результат.
- Количества единиц выборочной совокупности. Как уже упоминалось ранее, чем меньше единиц составит выборка, тем больше будет ошибка репрезентативности, и наоборот.
- Однородность исследуемой совокупности. Чем более разнородной является совокупность, тем больше будет погрешность репрезентативности. Возможность совокупности быть репрезентативной зависит от однородности всех ее составляющих единиц.
- Способ отбора единиц в выборочную совокупность.
В конкретно заданных исследованиях процент погрешности среднего значения обычно задается самим исследователем на основании программы наблюдения и согласно данным ранее проведенных исследований. Как правило, считается допустимой предельная ошибка выборки (ошибка репрезентативности) в пределах 3-5 %.
Больше – не всегда лучше
Также стоит помнить, что главное при организации выборочного наблюдения - это доведение его объема до допустимого минимума. При этом не следует стремиться к чрезмерному уменьшению границ погрешности выборки, так как это может привести к неоправданному увеличению объема данных выборки и, следовательно, к повышению расходов на проведение выборочного наблюдения.
В то же время нельзя и чрезмерно увеличивать размер погрешности репрезентативности. Ведь в этом случае, хотя и произойдет уменьшение объема выборочной совокупности, это приведет к ухудшению достоверности полученных результатов.
Какие вопросы обычно ставится перед исследователем
Любое исследование если и проводится, то для какой-то цели и для получения каких-то результатов. При проведении выборочного исследования, как правило, ставятся начальные вопросы:
- Определение необходимого количества единиц выборочной совокупности, то есть то, сколько единиц будет исследоваться. К тому же, для точного исследования совокупность должна быть репрезентативной.
- Расчет погрешности репрезентативности с установленным уровнем вероятности. Сразу стоит отметить, что выборочных исследований не бывает с уровнем вероятности 100 %. Если та инстанция, которая проводила изучение определенного сегмента, утверждает, что их результаты точны с вероятностью 100 %, то это ложь. Многолетняя практика уже установила процент вероятности правильно проведенного выборочного исследования. Этот показатель равняется 95,4 %.
Способы отбора единиц исследования в выборку
Не каждая выборка является репрезентативной. Иногда один и тот же признак по-разному выражен в целом и в ее части. Для достижения требований репрезентативности целесообразным является использование различных приемов создания выборки. Причем использование того или иного способа зависит от конкретных обстоятельств. Среди таких приемов создания выборки выделяют:
- случайный отбор;
- механический отбор;
- типичный отбор;
- серийный (гнездовой) отбор.
Случайный отбор представляет собой систему мероприятий, направленных на случайный отбор единиц совокупности, когда вероятность попасть в выборку является равной для всех единиц генеральной совокупности. Этот прием целесообразно применять только в случае однородности и небольшого количества присущих ей признаков. В противном случае некоторые характерные черты рискуют быть не отраженным в выборке. Признаки случайного отбора лежат в основе всех других способов построения выборки.
При механическом отбор единиц проводится через определенный интервал. Если необходимо сформировать выборку конкретных преступлений, можно изымать из всех карточек статистического учета зарегистрированных преступлений каждую 5-ю, 10-ю или 15-ю карточку в зависимости от их общего количества и имеющихся размеров выборки. Недостатком этого способа является то, что перед отбором необходимо иметь полный учет единиц совокупности, затем нужно провести ранжирование и только после этого можно проводить выборку с определенным интервалом. Этот метод занимает много времени, поэтому он и не часто используется.
Типичный (районированный) отбор – вид выборки, при котором генеральную совокупность разделяют на однородные группы по определенному признаку. Иногда исследователи употребляют вместо «групп» другие термины: «районы» и «зоны». Затем из каждой группы в случайном порядке отбирается определенное количество единиц пропорционально удельному весу группы в общей совокупности. Типичный отбор часто осуществляется в несколько этапов.
Серийный отбор - это такой метод, при котором отбор единиц проводится группами (сериями) и обследованию подлежат все единицы отобранной группы (серии). Преимуществом этого способа является то, что иногда отобрать отдельные единицы сложнее, чем серии, например, при изучении личности, которая отбывает наказание. В рамках отобранных районов, зон применяется изучение всех единиц без исключения, например, изучение всех лиц, отбывающих наказание в каком-то определенном учреждении.
Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255
На сегодняшний день существует огромное количество классификаций типов выборки, различные исследователи по-разному классифицируют свои и чужие способы формирования выборочной совокупности. В разных изданиях можно столкнуться с различными названиями одной и той же выборки, что затрудняет процесс их изучения. Рассмотрим одну из этих классификаций, объединяющую в себе все те, которые встречаются в используемой литературе.
Случайная выборка.
Такая выборка является наиболее точной, репрезентативность (способность выборки «правильно отражать состояние дел в генеральной совокупности, из которой она извлечена и для изучения которой предназначена») её достигается при помощи математических методов. Особенность случайной выборки заключается в том, что все единицы генеральной совокупности имеют равную вероятность попасть в выборочную совокупность. По определению, при случайной выборке выполняется принцип случайности. «Равенство шансов попасть в выборочную совокупность - насколько необходимое, настолько же и сложно осуществимое требование. Для обеспечения этой «статистической демократии» равенства шансов социолог, как правило, формирует основу выборки», то есть полный и точный перечень или пронумерованный список всех элементов генеральной совокупности. Например, основой выборки могут выступать списки работников предприятия, телефонные справочники, регистрационные списки владельцев автомобилей, списки избирателей на избирательных участках, домовые книги, а так же составленные самим социологом различные списки в зависимости от целей исследования (список улиц, на которых потом проводится отбор респондентов).
Случайная выборка обычно применяется при опросах общественного мнения перед выборами, референдумами и другими массовыми мероприятиями.
Плюсом данного метода является полное соблюдения принципа случайности и, как следствие - избежание систематических ошибок.
Случайная выборка обладает рядом недостатков, которые затрудняют ее применение на практике:
- 1. Необходимость наличия списка элементов генеральной совокупности. Трудность здесь заключается в том, что получить такой список далеко не всегда представляется возможным. Следовательно, в тех случаях, когда невозможно получить список элементов генеральной совокупности, невозможно проводить и случайный отбор.
- 2. Сложность проведения опроса. Процедура опроса при случайном отборе является очень громоздкой и требующей много времени. Ведь в результате случайного отбора исследователь получает на выходе список фамилий респондентов (телефонов, адресов и т.д.), которых необходимо опросить. То есть, интервьюерам приходится «бегать» за каждым респондентом и добиваться от него согласия ответить на «парочку вопросов».
Усложняет эту задачу и то, что респондентов порой бывает не так просто найти; в случае отсутствия респондента его приходится посещать по нескольку раз (по крайней мере, не менее трех раз).
Все вышеперечисленное ведет к повышенным временным затратам на проведение опроса. Временные затраты можно уменьшить только благодаря привлечению дополнительных интервьюеров, т.е. только за счет дополнительных денежных расходов. Кроме этого возникает еще так называемая проблема не ответивших.
3. Сравнительно большой объем выборки. Для получения результатов со сравнительно высокой степенью точности случайный отбор требует достаточно большого объема выборки по сравнению с другими видами отбора. Другими словами, случайный отбор обладает меньшей степенью точности, что, в конечном счете, является причиной его меньшей эффективности. А выборка считается более эффективной, если: при одинаковых расходах она более точна, а при одинаковой точности она более дешевая.
Простой случайный отбор.
«Простой случайный отбор из генеральной совокупности предполагает что:
- · генеральная совокупность однородна;
- · все её элементы доступны для исследования в одинаковой степени;
- · имеется полный список элементов, составляющих генеральную совокупность (или хотя бы репрезентативная основа выборки);
- · к этому списку применяются процедуры случайного отбора, с использованием таблиц или компьютерных генераторов случайных чисел».
Метод систематической выборки.
Этот метод заключается в том, что из основы выборки, которая представляет собой полный пронумерованный список элементов генеральной совокупности, через равные интервалы (шаги), например каждый второй, третий или десятый, осуществляется отбор заданного числа респондентов.
Интервал (k) рассчитывается по формуле:
где N - полное число элементов генеральной совокупности, а n - число элементов выборочной совокупности.
Первый респондент непременно отбирается случайным образом, по таблице случайных чисел.
Этот метод может привести к систематической ошибке, если список ранжирован по какому-либо признаку, так как тогда само определение места начала случайного отбора будет влиять на средние характеристики всей выборки. Когда генеральная совокупность слишком велика или исследователю известен не полный её список, необходимо знать правило упорядочивания элементов в генеральной совокупности, так как интервал отбора может совпасть со скрытой периодичностью распределения признака в генеральной совокупности, а это приведет в свою очередь к смещениям.
Метод систематической выборки позволяет даже при не большом объёме выборки изучить достаточно большие генеральные совокупности с помощью простой техники отбора.
Серийная выборка.
При серийной выборке единицами отбора выступают не сами индивиды, а группы (кластеры или гнёзда). Обычно генеральную совокупность расчленяют на естественные гнезда, так как «при формировании искусственных гнезд создаётся трудность отнесения каждого отдельного элемента генеральной совокупности только к одному гнезду и обеспечения приблизительно одинаковых размеров гнезд» по определённому признаку. В качестве кластеров выступают семьи, бригады, классы, студенческие группы, школы - при изучении школьников, и больницы - при изучении пациентов, а так же районы, города и такое прочее.
Применение кластерной процедуры основано на четырёх обязательных условиях:
- 1) каждый элемент генеральной совокупности может принадлежать только к одному кластеру;
- 2) должно быть известно или поддаваться оценке с приемлемой степенью точности число элементов генеральной совокупности каждого кластера;
- 3) кластеры должны быть не разбросаны пространственно и не слишком велики, иначе кластерная выборка теряет свои преимущества в финансовом смысле;
- 4) выбор кластеров должен быть осуществлен так, что бы рост выборочной ошибки был минимальным (разные кластеры не должны быть однородными по исследуемому признаку и слишком большими).
После отбора кластеров они, как правило, подвергаются сплошному исследованию, но при необходимости осуществляют выборку из гнезда.
«Число респондентов, отбираемых из серии, пропорционально общему числу элементов в ней. Из каждой (серии) можно осуществить отбор единиц анализа при помощи собственно-случайной или механической выборки. Количество респондентов, подлежащих отбору из каждой серии в отдельности, определяется из соотношения:
где i - число серий, выделенных в генеральной совокупности, Ni - число единиц в серии».
Достоинствами гнездового отбора можно назвать - организационную простоту и удобство опроса респондентов, которые находятся вместе, а не разбросаны пространственно, а так же то, что респонденты изучаются в их естественном окружении, а это, конечно, влияет на качество получаемой первичной информации. Иногда гнёзда подвергаются сплошному исследованию, а это гораздо проще, чем бегать за каждым респондентом, и при этом мы получаем выигрыш и в средствах, и во времени.
Но при этом необходимо следить, чтобы количество групп в генеральной совокупности было достаточно большим, иначе ни о каком принципе случайности не может быть и речи. Кроме того, возможны неточности из-за того, что на момент опроса не удается застать всех членов группы.
Стратифицированная выборка.
Применяется в тех случаях, «когда цели и задачи исследования требуют вероятностного отбора респондентов по каким-либо групповым критериям», или когда мы имеем дело с неоднородной генеральной совокупностью, или когда она слишком велика, или имеет сложную структуру, и основу выборки для всей генеральной совокупности получить сложно, чем для отдельных её частей. Для повышения точности результатов отбора процедура такой выборки состоит из деления генеральной совокупности на страты («страта» - это социальная, возрастная, или иная группа, буквально «слой»), которые являются однородными и используются для изучения электоральных намерений, социального класса и возраста, отношений к уровню доходов и другое. После определения страт в каждой из них осуществляется простая случайная или систематическая выборка, при наличии собственной основы выборки.
Выделяют три способа размещения выборки (для того чтобы выборка не теряла свой случайный характер):
- 1. Пропорциональное размещение выборки: из каждой страты отбирается определённый процент (5-10%) единиц отбора, «объем выборки из страты пропорционален размеру страты в генеральной совокупности». Этот способ очень простой и надёжный.
- 2. Равномерное размещение выборки: из каждой страты отбирается одинаковое число единиц (например, по 200-300). Применяется в случаях, когда исследователю неизвестны объемы страт исходной совокупности.
- 3. Оптимальное размещение выборки: считается, что самые неоднородные страты должны быть представлены в выборке наибольшим объёмом единиц, а однородные - наименьшим. Этот же способ используется очень редко, так как на практике он трудно реализуется из-за отсутствия информации о вариации признаков в генеральной совокупности.
Когда стратифицированную выборку называют районированной, значит стратификация проходит по территориальному принципу. Например, при опросах часто применяют районирование по областям.
Этот метод особенно хорош, когда генеральная совокупность неоднородна. Однако стратифицированная выборка может быть применена лишь при наличии дополнительной информации о генеральной совокупности (например, нам необходимо процентное соотношение мужчин и женщин, в случае, если мы хотим стратифицировать выборку по полу). Отсутствие такой информации делает применение стратифицированной выборки невозможным. Еще один недостаток стратифицированного отбора - это возможность систематической ошибки.
Неслучайная выборка.
При таком способе отбора единиц мы не можем заранее рассчитать вероятность каждого элемента попасть в состав выборочной совокупности, что не даёт возможности рассчитать репрезентативность выборки. В этом случае она является не обязательной, так как количественные параметры объекта не играют решающей роли в исследовании, а целью его будет - углублённое качественное описание какого-либо отдельного социального феномена.
Обычно неслучайный отбор применяют в следующих случаях:
- 1. Невозможно провести случайный отбор вследствие
:
- · Ограниченности ресурсов (недостаток денежных средств, нехватка времени, отведённого на проведение исследования, отсутствие списков единиц генеральной совокупности и так далее)
- · Этических проблем (нельзя заставить респондента отвечать, если он отказывается)
- 2. Отсутствие необходимости проведения случайного отбора.
Отбор в такой выборке осуществляется не по принципам рандомизации (которые обеспечивают «случайность» отбора элемента генеральной совокупности в выборку. К ним относятся, например, случайный выбор первого адреса из списка, запрет на обследование подряд однотипных квартир, процедуры случайного отбора респондентов в семье»), а по субъективным критериям - доступности, типичности, равного представительства и такое прочее. Главный недостаток неслучайных методов заключается в том, что не существует строгих статистических методов, которые позволили бы обобщить полученные результаты. Оценка точности и валидности таких результатов (и выводов в исследовании) остаётся делом субъективных суждении, опыта и теоретических предпочтений.
Стихийная выборка.
Исследователь при применении данного метода в некоторой степени контролирует выборку (например, публикуя анкету в журнале, он обращается только к читателям этого журнала), но решение о включении в выборку принимает сам респондент. То есть, её размер заранее часто не известен, а определяется конкретным условием - активностью респондентов. Значит, нельзя и заранее определить структуру массива респондентов, которые заполнят и вернут анкеты. Поэтому этот метод не претендует на репрезентативность выборки, а выводы исследования очень часто распространяются только на опрошенную совокупность.
Сферы применения стихийной выборки:
- 1) анкеты, публикуемые в газетах и журналах;
- 2) почтовые опросы;
- 3) опросы покупателей в залах супермаркетов;
- 4) опрос пассажиров на остановках и в общественном транспорте.
Многоступенчатая и одноступенчатая выборки.
Выборка делится на одноступенчатую и многоступенчатую по количеству ступеней в отборе. Одноступенчатая выборка предполагает, что из генеральной совокупности сразу осуществляется отбор респондентов для опроса. Процедура же многоступенчатой выборки включает несколько ступеней, при этом на каждой из них единица отбора меняется. «Различают единицы отбора первой ступени (первичные единицы), единицы отбора вторичной ступени (вторичные единицы) и так далее. Объекты самой нижней ступени, с которых ведется непосредственный сбор информации, называются единицами наблюдения». Например, задача исследования - изучение свободного времени студентов всей страны.
Процедура будет строиться следующим образом:
- 1. отбор регионов;
- 2. отбор города в них, где есть вузы;
- 3. отбор учебных заведений, в которых будет проводиться исследование;
- 4. выбор академических групп;
- 5. отбор студентов.
Многоступенчатая выборка осуществляется не в локальных масштабах, а в региональных, общенациональных, международных. Использовать одноступенчатую выборку в таких масштабах нерационально, да и очень дорого обойдётся такое исследование. Многоступенчатая выборка в этом плане экономична и упрощает подход к выбору объекта.
Но нужно учитывать, что чем больше ступеней в выборке, тем больше будет ошибка репрезентативности, возрастёт вероятность погрешностей, что приведёт к искажению результатов исследования.
Рассмотрев некоторые типы выборок, необходимо также уяснить, что такое объем выборки и какие бывают ошибки выборки и как их избежать.
Выборка
Выборка или выборочная совокупность - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Характеристики выборки:
- Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.
- Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.
Необходимость выборки
- Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.
- Существует необходимость в сборе первичной информации.
Объём выборки
Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30-35.
Зависимые и независимые выборки
При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми . Примеры зависимых выборок:
- пары близнецов,
- два измерения какого-либо признака до и после экспериментального воздействия,
- мужья и жёны
- и т. п.
В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми , например:
Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.
Сравнение выборок производится с помощью различных статистических критериев:
- и др.
Репрезентативность
Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.
Пример нерепрезентативной выборки
- Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия.
- Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора
- Исследование с использованием только одной группы - экспериментальной.
- Исследование с использованием смешанного (факторного) плана - все группы ставятся в разные условия.
Типы выборки
Выборки делятся на два типа:
- вероятностные
- невероятностные
Вероятностные выборки
- Простая вероятностная выборка:
- Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.
Процедура построения простой случайной выборки включает в себя следующие шаги:
1. необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;
2. определить предполагаемый объем выборки, то есть ожидаемое число опрошенных;
3. извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.
4. выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам
- Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения:
1. зачастую сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.
2. результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.
3. результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.
4. в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки.
- Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.
- Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина К определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.
- Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т. п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.
- Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.
- «Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки - с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.
Невероятностные выборки
Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д.
- Квотная выборка – выборка строится как модель, которая воспроизводит структуру генеральной совокупности в виде квот (пропорций) изучаемых признаков. Число элементов выборки с различным сочетанием изучаемых признаков определяется с таким расчётом, чтобы оно соответствовало их доле (пропорции) в генеральной совокупности. Так, например, если генеральная совокупность у нас представлена 5000 человек, из них 2000 женщин и 3000 мужчин, тогда в квотной выборке у нас будут 20 женщин и 30 мужчин, либо 200 женщин и 300 мужчин. Квотированные выборки чаще всего основываются на демографических критериях: пол, возраст, регион, доход, образование и прочих. Минусы: обычно такие выборки нерепрезентативны, т.к. нельзя учесть сразу несколько социальных параметров. Плюсы: легкодоступный материал.
- Метод снежного кома. Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)
- Стихийная выборка – выборка так называемого «первого встречного». Часто используется в теле- и радиоопросах. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов. Минусы: невозможно установить какую генеральную совокупность представляют опрошенные, и как следствие – невозможность определить репрезентативность.
- Маршрутный опрос – часто используется, если единицей изучения является семья. На карте населённого пункта, в котором будет производиться опрос, нумеруются все улицы. С помощью таблицы (генератора) случайных чисел отбираются большие числа. Каждое большое число рассматривается как состоящее из 3-х компонентов: номер улицы (2-3 первых числа), номер дома, номер квартиры. Например, число 14832: 14 – это номер улицы на карте, 8 – номер дома, 32 – номер квартиры.
- Районированная выборка с отбором типичных объектов. Если после районирования из каждой группы отбирается типичный объект, т.е. объект, который по большинству изучаемых в исследовании характеристик приближается к средним показателям, такая выборка называется районированной с отбором типичных объектов.
6.Модальная выборка. 7.экспертная выборка. 8.Гетерогенная выборка.
Стратегии построения групп
Отбор групп для их участия в психологическом эксперименте осуществляется с помощью различных стратегий, которые нужны для того, чтобы обеспечить максимально возможное соблюдение внутренней и внешней валидности .
Рандомизация
Рандомизация , или случайный отбор , используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза , можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек - это будет случайным отбором (Гудвин Дж., с. 147).
Попарный отбор
Попарный отбор - стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом - привлечением близнецовых пар (моно- и дизиготных), так как позволяет создать...
Стратометрический отбор
Стратометрический отбор - рандомизация с выделением страт (или кластеров). При данном способе формирования выборки генеральная совокупность делится на группы (страты), обладающие определёнными характеристиками (пол , возраст , политические предпочтения, образование , уровень доходов и др.), и отбираются испытуемые с соответствующими характеристиками.
Приближённое моделирование
Приближённое моделирование - составление ограниченных выборок и обобщение выводов об этой выборке на более широкую популяцию. Например, при участии в исследовании студентов 2-го курса университета, данные этого исследования распространяются на «людей в возрасте от 17 до 21 года». Допустимость подобных обобщений крайне ограничена.
Приближенное моделирование – формирование модели, которая для четко оговоренного класса систем (процессов) описывает его поведение (или нужные явления) с приемлемой точностью.
Примечания
Литература
Наследов А. Д. Математические методы психологического исследования. - СПб.: Речь, 2004.
- Ильясов Ф. Н. Репрезентативность результатов опроса в маркетинговом исследовании // Социологические исследования. 2011. № 3. С. 112-116.
См. также
- В некоторых типах исследований выборку делят на группы:
- экспериментальная
- контрольная
- Когорта
Ссылки
- Понятие выборки. Основные характеристики выборки. Типы выборки
Wikimedia Foundation . 2010 .
Синонимы :Смотреть что такое "Выборка" в других словарях:
выборка - группа испытуемых, представляющих определенную популяцию и отобранных для эксперимента или исследования. Противоположное понятие совокупность генеральная. Выборка есть часть совокупности генеральной. Словарь практического психолога. М.: АСТ,… … Большая психологическая энциклопедия
выборка - выборка Часть генеральной совокупности элементов, которая охватывается наблюдением (часто ее называют выборочной совокупностью, а выборкой — сам метод выборочного наблюдения). В математической статистике принят… … Справочник технического переводчика
- (sample) 1. Небольшое количество товара, отобранное, чтобы представлять все его количество. См.: продажа по образцу (sale by sample). 2. Небольшое количество товара, переданное потенциальным покупателям, чтобы дать им возможность провести его… … Словарь бизнес-терминов
Выборка - часть генеральной совокупности элементов, которая охватывается наблюдением (часто ее называют выборочной совокупностью, а выборкой сам метод выборочного наблюдения). В математической статистике принят принцип случайного отбора; это… … Экономико-математический словарь
- (sample) Произвольный отбор подгруппы элементов из основной совокупности, характеристики которых используются для оценки всей совокупности в целом. Выборочный метод используется, когда слишком долго или слишком дорого обследовать всю совокупность … Экономический словарь
Элементов, которая охватывается экспериментом (наблюдением, опросом).
Характеристики выборки:
- Качественная характеристика выборки - что именно мы выбираем и какие способы построения выборки мы для этого используем.
- Количественная характеристика выборки - сколько случаев выбираем, другими словами объём выборки.
Необходимость выборки:
- Объект исследования очень обширный. Например, потребители продукции глобальной компании - огромное количество территориально разбросанных рынков.
- Существует необходимость в сборе вторичной информации.
Объём выборки
Объём выборки - число случаев, включённых в выборочную совокупность.
Выборки можно условно разделить на большие и малые, так как в математической статистике используются различные подходы в зависимости от объёма выборки. Считается, что выборки объёма больше 30 можно отнести к большим .
Зависимые и независимые выборки
При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми . Примеры зависимых выборок:
- пары близнецов,
- два измерения какого-либо признака до и после экспериментального воздействия,
- мужья и жёны
- и т. п.
В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми , например:
- мужчины и женщины ,
- психологи и математики .
Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.
Сравнение выборок производится с помощью различных статистических критериев :
- Критерий Пирсона (χ 2 )
- Критерий Стьюдента (t )
- Критерий Вилкоксона (T )
- Критерий Манна - Уитни (U )
- Критерий знаков (G )
- и др.
Репрезентативность
Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной. Выборка будет репрезентативной при обследовании большой группы людей, если внутри этой группы есть представители разных подгрупп, только так можно сделать верные выводы.
Пример нерепрезентативной выборки
- Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия.
- Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора
- Исследование с использованием только одной группы - экспериментальной.
- Исследование с использованием смешанного (факторного) плана - все группы ставятся в разные условия.
Типы выборок
Выборки делятся на два типа:
- вероятностные
- невероятностные
Вероятностные выборки
- Простая вероятностная выборка:
- Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.
Процедура построения простой случайной выборки включает в себя следующие шаги:
1) необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;
2) определить предполагаемый объём выборки, то есть ожидаемое число опрошенных;
3) извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.
4) выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам
- Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения:
1) нередко сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.
2) результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.
3) результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.
4) в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объёме выборки.
- Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.
- Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина К определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.
- Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т. п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.
- Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.
- «Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки - с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.
Стратегии построения групп
Отбор групп для их участия в психологическом эксперименте осуществляется с помощью различных стратегий, которые нужны для того, чтобы обеспечить максимально возможное соблюдение внутренней и внешней валидности .
Рандомизация
Рандомизация , или случайный отбор , используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза , можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек - это будет случайным отбором (Гудвин Дж., с. 147)......
Попарный отбор
Попарный отбор - стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом - привлечением близнецовых пар (моно - и дизиготных).