Световой год и космические масштабы. Как измерить расстояние до звёзд? До звезды 20 световых лет

Наверняка, услышав в каком-нибудь фантастическом боевике выражение а-ля «до Татуина двадцать световых лет », многие задавались закономерными вопросами. Озвучу некоторые из них:

Разве год – это не время?

Тогда что же такое световой год ?

Сколько в нем километров?

За сколько преодолеет световой год космический корабль с Земли ?

Сегодняшнюю статью я решил посвятить объяснению значения этой единицы измерения, сравнению ее с нашими привычными километрами и демонстрации масштабов, которыми оперирует Вселенная .

Виртуальный гонщик.

Представим себе человека, в нарушение всех правил несущегося по шоссе со скоростью 250 км/ч. За два часа он преодолеет 500 км, а за четыре – целых 1000. Если, конечно, не разобьется в процессе…

Казалось бы, вот это скорость! Но для того, чтобы обогнуть весь земной шар (≈ 40 000 км), нашему гонщику понадобится в 40 раз больше времени. А это уже 4 х 40 = 160 часов. Или почти целая неделя непрерывной езды!

В итоге, однако, мы не скажем, что он преодолел 40 000 000 метров. Так как лень всегда заставляла нас придумывать и употреблять более короткие альтернативные единицы измерения.

Предел.

Из школьного курса физики каждому должно быть известно, что самый быстрый ездок во Вселенной – свет. За одну секунду его луч преодолевает расстояние примерно 300 000 км, а земной шар, таким образом, он обогнет за 0,134 секунды. Это в 4 298 507 раз быстрее, чем наш виртуальный гонщик!

От Земли до Луны свет доходит в среднем за 1,25 с, до Солнца же его луч домчится чуть более, чем за 8 минут.

Колоссально, не так ли? А ведь пока не доказано существование скоростей, больших скорости света. Поэтому ученый мир решил, что логично будет измерять космические масштабы в единицах, которые за определенные интервалы времени проходит радиоволна (коей свет, в частности, и является).

Расстояния.

Таким образом, световой год — ни что иное, как расстояние, которое луч света преодолевает за один год. В межзвездных масштабах использовать единицы расстояния, меньшие этой, не имеет особого смысла. И все же они есть. Вот их приближенные значения:

1 световая секунда ≈ 300 000 км;

1 световая минута ≈ 18 000 000 км;

1 световой час ≈ 1 080 000 000 км;

1 световые сутки ≈ 26 000 000 000 км;

1 световая неделя ≈ 181 000 000 000 км;

1 световой месяц ≈ 790 000 000 000 км.

А теперь, чтобы вы понимали, откуда берутся цифры, вычислим, чему равен один световой год .

В году 365 суток, в сутках 24 часа, в часе 60 минут, а в минуте 60 секунд. Таким образом, год состоит из 365 х 24 х 60 х 60 = 31 536 000 секунд. За одну секунду свет проходит 300 000 км. Следовательно, за год его луч преодолеет расстояние 31 536 000 х 300 000 = 9 460 800 000 000 км.

Это число читается так: ДЕВЯТЬ ТРИЛЛИОНОВ, ЧЕТЫРЕСТА ШЕСТЬДЕСЯТ МИЛЛИАРДОВ И ВОСЕМЬСОТ МИЛЛИОНОВ километров.

Конечно, точное значение светового года слегка отличается от вычисленного нами. Но при описании расстояний до звезд в научно-популярных статьях высочайшая точность в принципе не нужна, и сотня-другая миллионов километров здесь особой роли не сыграют.

А теперь продолжим наши мысленные эксперименты…

Масштабы.

Предположим, что современный космический корабль покидает Солнечную систему с третьей космической скоростью (≈ 16,7 км/с). Первый световой год он преодолеет за 18000 лет!

4,36 световых года до ближайшей к нам звездной системы (Альфы Центавра , см. изображение в начале) он преодолеет примерно за 78 тысяч лет!

Нашу галактику Млечный Путь , имеющую в поперечнике примерно 100 000 световых лет , он пересечет за 1 млрд. 780 млн. лет.

А до ближайшей к нам большой галактики , космический корабль домчится лишь спустя 36 миллиардов лет…

Вот такие пироги. А ведь в теории даже Вселенная возникла всего 16 млрд. лет назад…

И напоследок…

Космическим масштабам можно начать удивляться даже не выходя за пределы Солнечной системы , ведь она сама по себе очень велика. Весьма хорошо и наглядно это показали, например, создатели проекта If the Moon were only 1 pixel (Если бы Луна была всего одним пикселем ): http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html .

На этом я, пожалуй, завершу сегодняшнюю статью. Все ваши вопросы, замечания и пожелания рад приветствовать в комментариях под ней.

В какой-то момент жизни каждый из нас задавал этот вопрос: как долго лететь к звездам? Можно ли осуществить такой перелет за одну человеческую жизнь, могут ли такие полеты стать нормой повседневности? На этот сложный вопрос очень много ответов, в зависимости от того, кто спрашивает. Некоторые простые, другие сложнее. Чтобы найти исчерпывающий ответ, слишком многое нужно принять во внимание.

К сожалению, никаких реальных оценок, которые помогли бы найти такой ответ, не существует, и это расстраивает футурологов и энтузиастов межзвездных путешествий. Нравится нам это или нет, космос очень большой (и сложный), и наши технологии все еще ограничены. Но если мы когда-нибудь решимся покинуть «родное гнездышко», у нас будет несколько способов добраться до ближайшей звездной системы в нашей галактике.

Ближайшей звездой к нашей Земле является Солнце, вполне себе «средняя» звезда по схеме «главной последовательности» Герцшпрунга – Рассела. Это означает, что звезда весьма стабильна и обеспечивает достаточно солнечного света, чтобы на нашей планете развивалась жизнь. Мы знаем, что вокруг звезд рядом с нашей Солнечной системой вращаются и другие планеты, и многие из этих звезд похожи на нашу собственную.

В будущем, если человечество желает покинуть Солнечную систему, у нас будет огромный выбор звезд, на которые мы могли бы попасть, и многие из них вполне могут располагать благоприятными для жизни условиями. Но куда мы отправимся и сколько времени у нас займет дорога туда? Не забывайте, что все это всего лишь домыслы, и нет никаких ориентиров для межзвездных путешествий в настоящее время. Ну, как говорил Гагарин, поехали!

Дотянуться до звезды
Как уже отмечалось, ближайшая звезда к нашей Солнечной системе - это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 световых лет (1,3 парсек) от Земли. Альфа Центавра - это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 световых лет от Земли - тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде двигателя Алькубьерре), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Современные методы

Вопрос оценки длительности перемещения в космосе куда проще, если в нем замешаны существующие технологии и тела в нашей Солнечной системе. К примеру, используя технологию, используемую миссией «Новых горизонтов», 16 двигателей на гидразиновом монотопливе, можно добраться до Луны всего за 8 часов и 35 минут.

Есть также миссия SMART-1 Европейского космического агентства, которая двигалась к Луне с помощью ионной тяги. С этой революционной технологией, вариант которой использовал также космический зонд Dawn, чтобы достичь Весты, миссии SMART-1 потребовался год, месяц и две недели, чтобы добраться до Луны.

От быстрого ракетного космического аппарата до экономного ионного двигателя, у нас есть парочка вариантов передвижения по местному космосу - плюс можно использовать Юпитер или Сатурн как огромную гравитационную рогатку. Тем не менее, если мы планируем выбраться чуть подальше, нам придется наращивать мощь технологий и изучать новые возможности.

Когда мы говорим о возможных методах, мы говорим о тех, что вовлекают существующие технологии, или о тех, которых пока не существуют, но которые технически осуществимы. Некоторые из них, как вы увидите, проверены временем и подтверждены, а другие пока остаются под вопросом. Вкратце, они представляют возможный, но очень затратный по времени и финансам сценарий путешествия даже к ближайшей звезде.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства - пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.

SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 световых года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенностью сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 световых года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Гравитационный маневр

Самый быстрый способ космических путешествий - это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.

Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу Венеры для разгона в сторону Меркурия в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.

Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.

Из-за большого эксцентриситета (0,54) 190-дневной солнечной орбиты, в перигелии Helios 2 удалось достичь максимальной скорости свыше 240 000 км/ч. Эта орбитальная скорость была развита за счет только лишь гравитационного притяжения Солнца. Технически скорость перигелия Helios 2 не была результатом гравитационного маневра, а максимальной орбитальной скоростью, но аппарат все равно удерживает рекорд самого быстрого искусственного объекта.

Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 - постоянную скорость в 240 000 км/ч - ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 световых года. Существенно лучше, хотя и близко не практично.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий - это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.

Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.

В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Ядерное тепловое и ядерное электрическое движение

Еще одна возможность осуществить межзвездный перелет - использовать космический аппарат, оснащенный ядерными двигателями. NASA десятилетиями изучало такие варианты. В ракете на ядерном тепловом движении можно было бы использовать урановые или дейтериевые реакторы, чтобы нагревать водород в реакторе, превращая его в ионизированный газ (плазму водорода), который затем будет направляться в сопло ракеты, генерируя тягу.

Ракета с ядерным электрическим приводом включает тот же реактор, преобразующий тепло и энергию в электроэнергию, которая затем питает электродвигатель. В обоих случаях ракета будет полагаться на ядерный синтез или ядерное деление для создания тяги, а не на химическое топливо, на котором работают все современные космические агентства.

По сравнению с химическими двигателями, у ядерных есть неоспоримые преимущества. Во-первых, это практически неограниченная энергетическая плотность по сравнению с ракетным топливом. Кроме того, ядерный двигатель также будет вырабатывать мощную тягу по сравнению с используемым объемом топлива. Это позволит сократить объемы необходимого топлива, а вместе с тем вес и стоимость конкретного аппарата.

Хотя двигатели на тепловой ядерной энергии пока в космос не выходили, их прототипы создавались и испытывались, а предлагалось их еще больше.

И все же, несмотря на преимущества в экономии топлива и удельном импульсе, самая лучшая из предложенных концепций ядерного теплового двигателя имеет максимальный удельный импульс в 5000 секунд (50 кН·c/кг). Используя ядерные двигатели, работающие на ядерном делении или синтезе, ученые NASA могли бы доставить космический аппарат на Марс всего за 90 дней, если Красная планета будет в 55 000 000 километрах от Земли.

Но если говорить о путешествии к Проксиме Центавра, ядерной ракете потребуются столетия, чтобы разогнаться до существенной доли скорости света. Потом потребуются несколько десятилетий пути, а за ними еще много веков торможения на пути к цели. Мы все еще в 1000 годах от пункта назначения. Что хорошо для межпланетных миссий, не так хорошо для межзвездных.

Как определить расстояние до звезд? Откуда известно, что до альфа Центавра — около 4 световых лет? Ведь по яркости звезды, как таковой, мало что определишь - блеск у тусклой близкой и яркой далекой звезд может быть одинаковым. И все же есть много достаточно надежных способов определить расстояния от Земли до самых дальних уголков Вселенной. Астрометрический спутник «Гиппарх» за 4 года работы определил расстояния до 118 тысяч звезд SPL

Что бы ни говорили физики о трехмерности, шестимерности или даже одиннадцатимерности пространства, для астронома наблюдаемая Вселенная всегда двумерна. Происходящее в Космосе видится нам в проекции на небесную сферу, подобно тому, как в кино на плоский экран проецируется вся сложность жизни. На экране мы легко отличаем далекое от близкого благодаря знакомству с объемным оригиналом, но в двумерной россыпи звезд нет наглядной подсказки, позволяющей обратить ее в трехмерную карту, пригодную для прокладки курса межзвездного корабля. Между тем расстояния - это ключ едва ли не к половине всей астрофизики. Как без них отличить близкую тусклую звезду от далекого, но яркого квазара? Только зная расстояние до объекта, можно оценить его энергетику, а отсюда прямая дорога к пониманию его физической природы.

Недавний пример неопределенности космических расстояний - проблема источников гамма-всплесков, коротких импульсов жесткого излучения, примерно раз в сутки приходящих на Землю с различных направлений. Первоначальные оценки их удаленности варьировались от сотен астрономических единиц (десятки световых часов) до сотен миллионов световых лет. Соответственно, и разброс в моделях также впечатлял - от аннигиляции комет из антивещества на окраинах Солнечной системы до сотрясающих всю Вселенную взрывов нейтронных звезд и рождения белых дыр. К середине 1990-х было предложено более сотни разных объяснений природы гамма-всплесков. Теперь же, когда мы смогли оценить расстояния до их источников, моделей осталось только две.

Но как измерить расстояние, если до предмета не дотянуться ни линейкой, ни лучом локатора? На помощь приходит метод триангуляции, широко применяемый в обычной земной геодезии. Выбираем отрезок известной длины - базу, измеряем из его концов углы, под которыми видна недоступная по тем или иным причинам точка, а затем простые тригонометрические формулы дают искомое расстояние. Когда мы переходим с одного конца базы на другой, видимое направление на точку меняется, она сдвигается на фоне далеких объектов. Это называется параллактическим смещением, или параллаксом. Величина его тем меньше, чем дальше объект, и тем больше, чем длиннее база.

Для измерения расстояний до звезд приходится брать максимально доступную астрономам базу, равную диаметру земной орбиты. Соответствующее параллактическое смещение звезд на небе (строго говоря, его половину) стали называть годичным параллаксом. Измерить его пытался еще Тихо Браге, которому пришлась не по душе идея Коперника о вращении Земли вокруг Солнца, и он решил ее проверить - параллаксы ведь еще и доказывают орбитальное движение Земли. Проведенные измерения имели впечатляющую для XVI века точность - около одной минуты дуги, но для измерения параллаксов этого было совершенно недостаточно, о чем сам Браге не догадывался и заключил, что система Коперника неверна.

Расстояние до звездных скоплений определяют методом подгонки главной последовательности

Следующее наступление на параллакс предпринял в 1726 году англичанин Джеймс Брэдли, будущий директор Гринвичской обсерватории . Поначалу казалось, что ему улыбнулась удача: выбранная для наблюдений звезда гамма Дракона действительно в течение года колебалась вокруг своего среднего положения с размахом 20 секунд дуги. Однако направление этого смещения отличалось от ожидаемого для параллаксов, и Брэдли вскоре нашел правильное объяснение: скорость движения Земли по орбите складывается со скоростью света, идущего от звезды, и меняет его видимое направление. Точно так же капли дождя оставляют наклонные дорожки на стеклах автобуса. Это явление, получившее название годичной аберрации, стало первым прямым доказательством движения Земли вокруг Солнца, но не имело никакого отношения к параллаксам.

Лишь спустя столетие точность угломерных инструментов достигла необходимого уровня. В конце 30-х годов XIX века, по выражению Джона Гершеля , «стена, мешавшая проникновению в звездную Вселенную, была пробита почти одновременно в трех местах». В 1837 году Василий Яковлевич Струве (в то время директор Дерптской обсерватории, а позднее - Пулковской) опубликовал измеренный им параллакс Веги - 0,12 угловой секунды. На следующий год Фридрих Вильгельм Бессель сообщил, что параллакс звезды 61-й Лебедя составляет 0,3". А еще через год шотландский астроном Томас Гендерсон, работавший в Южном полушарии на мысе Доброй Надежды, измерил параллакс в системе альфа Центавра - 1,16". Правда, позднее выяснилось, что это значение завышено в 1,5 раза и на всем небе нет ни одной звезды с параллаксом больше 1 секунды дуги.

Для расстояний, измеренных параллактическим методом, была введена специальная единица длины - парсек (от параллактическая секунда, пк). В одном парсеке содержится 206 265 астрономических единиц, или 3,26 светового года. Именно с такой дистанции радиус земной орбиты (1 астрономическая единица = 149,5 миллиона километров) виден под углом в 1 секунду. Чтобы определить расстояние до звезды в парсеках, нужно разделить единицу на ее параллакс в секундах. Например, до самой близкой к нам звездной системы альфа Центавра 1/0,76 = 1,3 парсека, или 270 тысяч астрономических единиц. Тысяча парсек называется килопарсеком (кпк), миллион парсек - мегапарсеком (Мпк), миллиард - гигапарсеком (Гпк).

Измерение чрезвычайно малых углов требовало технической изощренности и огромного усердия (Бессель, например, обработал более 400 отдельных наблюдений 61-й Лебедя), однако после первого прорыва дело пошло легче. К 1890 году были измерены параллаксы уже трех десятков звезд, а когда в астрономии стала широко применяться фотография, точное измерение параллаксов и вовсе было поставлено на поток. Измерение параллаксов - единственный метод прямого определения расстояний до отдельных звезд. Но при наземных наблюдениях атмосферные помехи не позволяют параллактическим методом измерять расстояния свыше 100 пк. Для Вселенной это не очень большая величина. («Здесь недалеко, парсеков сто», - как говорил Громозека.) Там, где пасуют геометрические методы, на выручку приходят фотометрические.

Геометрические рекорды

В последние годы все чаще публикуются результаты измерения расстояний до очень компактных источников радиоизлучения - мазеров. Их излучение приходится на радиодиапазон, что позволяет наблюдать их на радиоинтерферометрах, способных измерять координаты объектов с микросекундной точностью, недостижимой в оптическом диапазоне, в котором наблюдаются звезды. Благодаря мазерам тригонометрические методы удается применять не только к далеким объектам нашей Галактики, но и к другим галактикам. Так, например, в 2005 году Андреас Брунталер (Andreas Brunthaler, Германия) и его коллеги определили расстояние до галактики М33 (730 кпк), сопоставив угловое смещение мазеров со скоростью вращения этой звездной системы. А годом позже Йе Зу (Ye Xu, КНР) с коллегами применили классический метод параллаксов к «местным» мазерным источникам, чтобы измерить расстояние (2 кпк) до одного из спиральных рукавов нашей Галактики. Пожалуй, дальше всех удалось продвинуться в 1999 году Дж. Хернстину (США) с коллегами. Отслеживая движение мазеров в аккреционном диске вокруг черной дыры в ядре активной галактики NGC 4258, астрономы определили, что эта система удалена от нас на расстояние 7,2 Мпк. На сегодняшний день это абсолютный рекорд геометрических методов.

Стандартные свечи астрономов

Чем дальше от нас находится источник излучения, тем он тусклее. Если узнать истинную светимость объекта, то, сравнив ее с видимым блеском, можно найти расстояние. Вероятно, первым применил эту идею к измерению расстояний до звезд Гюйгенс. Ночью он наблюдал Сириус, а днем сравнивал его блеск с крохотным отверстием в экране, закрывавшем Солнце . Подобрав размер отверстия так, чтобы обе яркости совпадали, и сравнив угловые величины отверстия и солнечного диска, Гюйгенс заключил, что Сириус находится от нас в 27 664 раза дальше, чем Солнце. Это в 20 раз меньше реального расстояния. Отчасти ошибка объяснялась тем, что Сириус на самом деле намного ярче Солнца, а отчасти - трудностью сравнения блеска по памяти.

Прорыв в области фотометрических методов случился с приходом в астрономию фотографии. В начале XX века Обсерватория Гарвардского колледжа вела масштабную работу по определению блеска звезд по фотопластинкам. Особое внимание уделялось переменным звездам, блеск которых испытывает колебания. Изучая переменные звезды особого класса - цефеиды - в Малом Магеллановом Облаке, Генриетта Левитт заметила, что чем они ярче, тем больше период колебания их блеска: звезды с периодом в несколько десятков дней оказались примерно в 40 раз ярче звезд с периодом порядка суток.

Поскольку все цефеиды Левитт находились в одной и той же звездной системе - Малом Магеллановом Облаке, - можно было считать, что они удалены от нас на одно и то же (пусть и неизвестное) расстояние. Значит, разница в их видимом блеске связана с реальными различиями в светимости. Оставалось определить геометрическим методом расстояние до одной цефеиды, чтобы прокалибровать всю зависимость и получить возможность, измерив период, определять истинную светимость любой цефеиды, а по ней расстояние до звезды и содержащей ее звездной системы.

Но, к сожалению, в окрестностях Земли нет цефеид. Ближайшая из них - Полярная звезда - удалена от Солнца, как мы теперь уже знаем, на 130 пк, то есть находится вне пределов досягаемости для наземных параллактических измерений. Это не позволяло перекинуть мостик напрямую от параллаксов к цефеидам, и астрономам пришлось возводить конструкцию, которую теперь образно называют лестницей расстояний.

Промежуточной ступенью на ней стали рассеянные звездные скопления, включающие от нескольких десятков до сотен звезд, связанных общим временем и местом рождения. Если нанести на график температуру и светимость всех звезд скопления, большая часть точек ляжет на одну наклонную линию (точнее, полосу), которая называется главной последовательностью. Температуру с высокой точностью определяют по спектру звезды, а светимость - по видимому блеску и расстоянию. Если расстояние неизвестно, на помощь опять приходит тот факт, что все звезды скопления удалены от нас практически одинаково, так что в пределах скопления видимый блеск все равно можно использовать в качестве меры светимости.

Поскольку звезды везде одинаковые, главные последовательности у всех скоплений должны совпадать. Различия связаны лишь с тем, что они находятся на разных расстояниях. Если определить геометрическим методом расстояние до одного из скоплений, то мы узнаем, как выглядит «настоящая» главная последовательность, и тогда, сравнив с ней данные по другим скоплениям, мы определим расстояния до них. Этот метод называется «подгонкой главной последовательности». Эталоном для него долгое время служили Плеяды и Гиады, расстояния до которых были определены методом групповых параллаксов.

К счастью для астрофизики, примерно в двух десятках рассеянных скоплений обнаружены цефеиды. Поэтому, измерив расстояния до этих скоплений с помощью подгонки главной последовательности, можно «дотянуть лестницу» и до цефеид, которые оказываются на ее третьей ступени.

В роли индикатора расстояний цефеиды очень удобны: их относительно много - они найдутся в любой галактике и даже в любом шаровом скоплении, а будучи звездами-гигантами, они достаточно ярки, чтобы измерять по ним межгалактические дистанции. Благодаря этому они заслужили много громких эпитетов, вроде «маяков Вселенной» или «верстовых столбов астрофизики». Цефеидная «линейка» протягивается до 20 Мпк - это примерно в сто раз больше размеров нашей Галактики. Дальше их уже не различить даже в мощнейшие современные инструменты, и, чтобы подняться на четвертую ступень лестницы расстояний, нужно что-то поярче.

К окраинам Вселенной

Один из наиболее мощных внегалактических методов измерения расстояний основан на закономерности, известной как соотношение Талли - Фишера: чем ярче спиральная галактика, тем быстрее она вращается. Когда галактика видна с ребра или под значительным наклоном, половина ее вещества из-за вращения приближается к нам, а половина - удаляется, что приводит к расширению спектральных линий вследствие эффекта Доплера. По этому расширению определяют скорость вращения, по ней - светимость, а затем из сравнения с видимой яркостью - расстояние до галактики. И, конечно, для калибровки этого метода нужны галактики, расстояния до которых уже измерены по цефеидам. Метод Талли - Фишера весьма дальнобойный и охватывает галактики, удаленные от нас на сотни мегапарсек, но и у него есть предел, поскольку для слишком далеких и слабых галактик не получить достаточно качественных спектров.

В несколько большем диапазоне расстояний действует еще одна «стандартная свеча» - сверхновые типа Ia. Вспышки таких сверхновых представляют собой «однотипные» термоядерные взрывы белых карликов с массой чуть выше критической (1,4 массы Солнца). Поэтому у них нет причин сильно варьироваться по мощности. Наблюдения таких сверхновых в близких галактиках, расстояния до которых удается определить по цефеидам, как будто бы подтверждают это постоянство, и потому космические термоядерные взрывы широко применяются сейчас для определения расстояний. Они видны даже в миллиардах парсек от нас, но зато никогда не знаешь, расстояние до какой галактики удастся измерить, ведь заранее неизвестно, где именно вспыхнет очередная сверхновая.

Продвинуться еще дальше позволяет пока лишь один метод - красные смещения. Его история, как и история цефеид, начинается одновременно с XX веком. В 1915 году американец Весто Слайфер, изучая спектры галактик, заметил, что в большинстве из них линии смещены в красную сторону относительно «лабораторного» положения. В 1924 году немец Карл Виртц обратил внимание, что это смещение тем сильнее, чем меньше угловые размеры галактики. Однако свести эти данные в единую картину удалось только Эдвину Хабблу в 1929 году. Согласно эффекту Доплера красное смещение линий в спектре означает, что объект удаляется от нас. Сопоставив спектры галактик с расстояниями до них, определенными по цефеидам, Хаббл сформулировал закон: скорость удаления галактики пропорциональна расстоянию до нее. Коэффициент пропорциональности в этом соотношении получил название постоянной Хаббла.

Тем самым было открыто расширение Вселенной, а вместе с ним возможность определения расстояний до галактик по их спектрам, конечно, при условии, что постоянная Хаббла привязана к каким-то другим «линейкам». Сам Хаббл выполнил эту привязку с ошибкой почти на порядок, которую удалось исправить только в середине 1940-х годов, когда выяснилось, что цефеиды делятся на несколько типов с разными соотношениями «период - светимость». Калибровку выполнили заново с опорой на «классические» цефеиды, и только тогда значение постоянной Хаббла стало близким к современным оценкам: 50- 100 км/с на каждый мегапарсек расстояния до галактики.

Сейчас по красным смещениям определяют расстояния до галактик, удаленных от нас на тысячи мегапарсек. Правда, в мегапарсеках эти расстояния указывают только в популярных статьях. Дело в том, что они зависят от принятой в расчетах модели эволюции Вселенной, и к тому же в расширяющемся пространстве не вполне ясно, какое расстояние имеется в виду: то, на котором была галактика в момент испускания излучения, либо то, на котором она находится в момент его приема на Земле, или же расстояние, пройденное светом, на пути от исходной точки до конечной. Поэтому астрономы предпочитают указывать для далеких объектов только непосредственно наблюдаемую величину красного смещения, не переводя ее в мегапарсеки.

Красные смещения - это единственный на сегодня метод оценки «космологических» расстояний, сопоставимых с «размером Вселенной», и вместе с тем это, пожалуй, самая массовая техника. В июле 2007 года опубликован каталог красных смещений 77 418 767 галактик. Правда, при его создании использовалась несколько упрощенная автоматическая методика анализа спектров, и поэтому в некоторые значения могли вкрасться ошибки.

Игра в команде

Геометрические методы измерения расстояний не исчерпываются годичным параллаксом, в котором видимые угловые смещения звезд сравниваются с перемещениями Земли по орбите. Еще один подход опирается на движение Солнца и звезд друг относительно друга. Представим себе звездное скопление, пролетающее мимо Солнца. По законам перспективы видимые траектории его звезд, как рельсы на горизонте, сходятся в одну точку - радиант. Его положение говорит о том, под каким углом к лучу зрения летит скопление. Зная этот угол, можно разложить движение звезд скопления на две компоненты - вдоль луча зрения и перпендикулярно ему по небесной сфере - и определить пропорцию между ними. Лучевую скорость звезд в километрах в секунду измеряют по эффекту Доплера и с учетом найденной пропорции вычисляют проекцию скорости на небосвод - тоже в километрах в секунду. Остается сравнить эти линейные скорости звезд с угловыми, определенными по результатам многолетних наблюдений, - и расстояние будет известно! Этот способ работает до нескольких сотен парсек, но применим только к звездным скоплениям и потому называется методом групповых параллаксов. Именно так были впервые измерены расстояния до Гиад и Плеяд.

Вниз по лестнице, ведущей вверх

Выстраивая нашу лестницу к окраинам Вселенной, мы умалчивали о фундаменте, на котором она покоится. Между тем метод параллаксов дает расстояние не в эталонных метрах, а в астрономических единицах, то есть в радиусах земной орбиты, величину которой тоже удалось определить далеко не сразу. Так что оглянемся назад и спустимся по лестнице космических расстояний на Землю.

Вероятно, первым удаленность Солнца попытался определить Аристарх Самосский, предложивший гелиоцентрическую систему мира за полторы тысячи лет до Коперника. У него получилось, что Солнце находится в 20 раз дальше от нас, чем Луна. Эта оценка, как мы теперь знаем, заниженная в 20 раз, продержалась вплоть до эпохи Кеплера. Тот хотя сам и не измерил астрономическую единицу, но уже отметил, что Солнце должно быть гораздо дальше, чем считал Аристарх (а за ним и все остальные астрономы).

Первую более или менее приемлемую оценку расстояния от Земли до Солнца получили Жан Доминик Кассини и Жан Рише. В 1672 году, во время противостояния Марса, они измерили его положение на фоне звезд одновременно из Парижа (Кассини) и Кайенны (Рише). Расстояние от Франции до Французской Гвианы послужило базой параллактического треугольника, из которого они определили расстояние до Марса, а затем по уравнениям небесной механики вычислили астрономическую единицу, получив значение 140 миллионов километров.

На протяжении следующих двух веков главным инструментом для определения масштабов Солнечной системы стали прохождения Венеры по диску Солнца. Наблюдая их одновременно из разных точек земного шара, можно вычислить расстояние от Земли до Венеры, а отсюда и все остальные расстояния в Солнечной системе. В XVIII-XIX веках это явление наблюдалось четырежды: в 1761, 1769, 1874 и 1882 годах. Эти наблюдения стали одними из первых международных научных проектов. Снаряжались масштабные экспедиции (английской экспедицией 1769 года руководил знаменитый Джеймс Кук), создавались специальные наблюдательные станции... И если в конце XVIII века Россия лишь предоставила французским ученым возможность наблюдать прохождение со своей территории (из Тобольска), то в 1874 и 1882 годах российские ученые уже принимали активное участие в исследованиях. К сожалению, исключительная сложность наблюдений привела к значительному разнобою в оценках астрономической единицы - примерно от 147 до 153 миллионов километров. Более надежное значение - 149,5 миллиона километров - было получено только на рубеже XIX-XX веков по наблюдениям астероидов. И, наконец, нужно учитывать, что результаты всех этих измерений опирались на знание длины базы, в роли которой при измерении астрономической единицы выступал радиус Земли. Так что в конечном итоге фундамент лестницы космических расстояний был заложен геодезистами.

Только во второй половине XX века в распоряжении ученых появились принципиально новые способы определения космических расстояний - лазерная и радиолокация. Они позволили в сотни тысяч раз повысить точность измерений в Солнечной системе. Погрешность радиолокации для Марса и Венеры составляет несколько метров, а расстояние до уголковых отражателей, установленных на Луне, измеряется с точностью до сантиметров. Принятое же на сегодня значение астрономической единицы составляет 149 597 870 691 метр.

Трудная судьба «Гиппарха»

Столь радикальный прогресс в измерении астрономической единицы по-новому поставил вопрос о расстояниях до звезд. Точность определения параллаксов ограничивает атмосфера Земли. Поэтому еще в 1960-х годах возникла идея вывести угломерный инструмент в космос. Реализовалась она в 1989 году с запуском европейского астрометрического спутника «Гиппарх». Это название - устоявшийся, хотя формально и не совсем правильный перевод английского названия HIPPARCOS, которое является сокращением от High Precision Parallax Collecting Satellite («спутник для сбора высокоточных параллаксов») и не совпадает с англоязычным же написанием имени знаменитого древнегреческого астронома - Hipparchus, автора первого звездного каталога.

Создатели спутника поставили перед собой очень амбициозную задачу: измерить параллаксы более 100 тысяч звезд с миллисекундной точностью, то есть «дотянуться» до звезд, находящихся в сотнях парсек от Земли. Предстояло уточнить расстояния до нескольких рассеянных звездных скоплений, в частности Гиад и Плеяд. Но главное, появлялась возможность «перепрыгнуть через ступеньку», непосредственно измерив расстояния до самих цефеид.

Экспедиция началась с неприятностей. Из-за сбоя в разгонном блоке «Гиппарх» не вышел на расчетную геостационарную орбиту и остался на промежуточной сильно вытянутой траектории. Специалистам Европейского космического агентства все же удалось справиться с ситуацией, и орбитальный астрометрический телескоп успешно проработал 4 года. Еще столько же продлилась обработка результатов, и в 1997 году в свет вышел звездный каталог с параллаксами и собственными движениями 118 218 светил, в числе которых было около двухсот цефеид.

К сожалению, в ряде вопросов желаемая ясность так и не наступила. Самым непонятным оказался результат для Плеяд - предполагалось, что «Гиппарх» уточнит расстояние, которое прежде оценивалось в 130-135 парсек, однако на практике оказалось, что «Гиппарх» его исправил, получив значение всего 118 парсек. Принятие нового значения потребовало бы корректировки как теории эволюции звезд, так и шкалы межгалактических расстояний. Это стало бы серьезной проблемой для астрофизики, и расстояние до Плеяд стали тщательно проверять. К 2004 году несколько групп независимыми методами получили оценки расстояния до скопления в диапазоне от 132 до 139 пк. Начали раздаваться обидные голоса с предположениями, что последствия вывода спутника на неверную орбиту все-таки не удалось окончательно устранить. Тем самым под вопрос ставились вообще все измеренные им параллаксы.

Команда «Гиппарха» была вынуждена признать, что результаты измерений в целом точны, но, возможно, нуждаются в повторной обработке. Дело в том, что в космической астрометрии параллаксы не измеряются непосредственно. Вместо этого «Гиппарх» на протяжении четырех лет раз за разом измерял углы между многочисленными парами звезд. Эти углы меняются как из-за параллактического смещения, так и вследствие собственных движений звезд в пространстве. Чтобы «вытащить» из наблюдений именно значения параллаксов, требуется довольно сложная математическая обработка. Вот ее-то и пришлось повторить. Новые результаты были опубликованы в конце сентября 2007 года, но пока еще неясно, насколько при этом улучшилось положение дел.

Но этим проблемы «Гиппарха» не исчерпываются. Определенные им параллаксы цефеид оказались недостаточно точными для уверенной калибровки соотношения «период-светимость». Тем самым спутнику не удалось решить и вторую стоявшую перед ним задачу. Поэтому сейчас в мире рассматривается несколько новых проектов космической астрометрии. Ближе всех к реализации стоит европейский проект «Гайа» (Gaia), запуск которого намечен на 2012 год. Его принцип действия такой же, как у «Гиппарха», - многократные измерения углов между парами звезд. Однако благодаря мощной оптике он сможет наблюдать значительно более тусклые объекты, а использование метода интерферометрии повысит точность измерения углов до десятков микросекунд дуги. Предполагается, что «Гайа» сможет измерять килопарсековые расстояния с ошибкой не более 20% и за несколько лет работы определит положения около миллиарда объектов. Тем самым будет построена трехмерная карта значительной части Галактики.

Вселенная Аристотеля заканчивалась в девяти расстояниях от Земли до Солнца. Коперник считал, что звезды расположены в 1 000 раз дальше, чем Солнце. Параллаксы отодвинули даже ближайшие звезды на световые годы. В самом начале XX века американский астроном Харлоу Шепли при помощи цефеид определил, что поперечник Галактики (которую он отождествлял со Вселенной) измеряется десятками тысяч световых лет, а благодаря Хабблу границы Вселенной расширились до нескольких гигапарсек. Насколько окончательно они закреплены?

Конечно, на каждой ступени лестницы расстояний возникают свои, большие или меньшие погрешности, но в целом масштабы Вселенной определены достаточно хорошо, проверены разными не зависящими друг от друга методами и складываются в единую согласованную картину. Так что современные границы Вселенной кажутся незыблемыми. Впрочем, это не означает, что в один прекрасный день мы не захотим измерить расстояние от нее до какой-нибудь соседней Вселенной!

Проксима Центавра.

Вот классический вопрос на засыпку. Спросите друзей, "Какая является ближайшей к нам? ", а затем смотрите, как они будут перечислять ближайшие звёзды . Может быть Сириус? Альфа что-то там? Бетельгейзе? Ответ очевиден - это ; массивный шар плазмы, расположенный примерно в 150 миллионах километров от Земли. Давайте уточним вопрос. Какая звезда самая близкая к Солнцу ?

Ближайшая звезда

Вы, наверное, слышали, что - третья по яркости звезда в небе на расстоянии всего 4,37 световых года от . Но Альфа Центавра не одиночная звезда, это система из трёх звёзд. Во-первых, двойная звезда (бинарная звезда) с общим центром гравитации и орбитальным периодом 80 лет. Альфа Центавра А лишь немного массивнее и ярче Солнца, а Альфа Центавра B чуть мене массивна, чем Солнце. Также в этой системе присутствует третий компонент, тусклый красный карлик Проксима Центавра (Proxima Centauri) .


Проксима Центавра - это и есть самая близкая звезда к нашему Солнцу , расположенная на расстоянии всего 4,24 световых года.

Проксима Центавра.

Кратная звёздная система Альфа Центавра расположена в созвездии Центавра, которое видно только в южном полушарии. К сожалению, даже если вы увидите эту систему, вы не сможете разглядеть Проксиму Центавра . Эта звезда настолько тусклая, что вам понадобится достаточно мощный телескоп, чтобы разглядеть её.

Давайте выясним масштаб того, насколько далека Проксима Центавра от нас. Подумайте о . движется со скоростью почти 60 000 км/ч, самый быстрый в . Этот путь он преодолел в 2015 году за 9 лет. Путешествуя с такой скоростью, чтобы добраться до Проксимы Центавра , "Новым Горизонтам" потребуется 78 000 световых лет.

Проксима Центавра - это ближайшая звезда на протяжении 32 000 световых лет, и она будет удерживать данный рекорд ещё 33 000 лет. Она совершит свой самый близкий подход к Солнцу примерно через 26700 лет, когда расстояние от этой звезды до Земли будет всего 3,11 световых года. Через 33 000 лет ближайшей звездой станет Ross 248 .

Что насчёт северного полушария?

Для тех из нас, кто живёт в северном полушарии, ближайшей видимой звездой является Звезда Барнарда , ещё один красный карлик в созвездии Змееносца (Ophiuchus). К сожалению, как и Проксима Центавра, Звезда Барнарда слишком тусклая, чтобы видеть её невооружённым глазом.


Звезда Барнарда.

Ближайшая звезда , которую вы сможете увидеть невооружённым глазом в северном полушарии - это Сириус (Альфа Большого Пса) . Сириус в два раза больше Солнца по размеру и по массе, и самая яркая звезда в небе. Расположенная в 8,6 световых лет от нас в созвездии Большого Пса (Canis Major) - это самая известная звезда, преследующая Орион на ночном небе зимой.

Как астрономы измерили расстояние до звёзд?

Они используют метод, называемый . Давайте проведём небольшой эксперимент. Держите одну руку вытянутой в длину и поместите свой палец так, чтобы рядом находился какой-то отдалённый объект. Теперь поочерёдно открывайте и закрывайте каждый глаз. Обратите внимание, кажется, что ваш палец прыгает туда и обратно, когда вы смотрите разными глазами. Это и есть метод параллакса.

Параллакс.

Чтобы измерить расстояние до звёзд, вы можете измерить угол до звезды по отношению к , когда Земля находится на одной стороне орбиты, скажем летом, затем через 6 месяцев, когда Земля передвинется на противоположную сторону орбиты, а затем измерить угол до звезды по сравнению с каким-нибудь отдалённым объектом. Если звезда близко к нам, данный угол можно будет измерить и вычислить расстояние.

Вы можете действительно можете измерить расстояние таким способом до ближайших звёзд , но этот метод работает только до 100"000 световых лет.

20 ближайших звёзд

Вот список из 20 ближайших звёздных систем и их расстояние до них в световых годах. Некоторые из них имеют несколько звёзд, но они часть одной и той же системы.

Звезда Расстояние, св. лет
Альфа Центавра (Alpha Centauri) 4,2
Звезда Барнарда (Barnard’s Star) 5,9
Вольф 359 (Wolf 359; CN Льва) 7,8
Лаланд 21185 (Lalande 21185) 8,3
Сириус (Sirius) 8,6
Лейтен 726-8 (Luyten 726-8) 8,7
Росс 154 (Ross 154) 9,7
Росс 248 (Ross 248 10,3
Эпсилон Эридана (Epsilon Eridani) 10,5
Лакайль 9352 (Lacaille 9352) 10,7
Росс 128 (Ross 128) 10,9
EZ Водолея (EZ Aquarii) 11,3
Процион (Procyon) 11,4
61 Лебедя (61 Cygni) 11,4
Струве 2398 (Struve 2398) 11,5
Грумбридж 34 (Groombridge 34) 11,6
Эпсилон Индейца (Epsilon Indi) 11,8
DX Рака (DX Cancri) 11,8
Тау Кита (Tau Ceti) 11,9
GJ 106 11,9

По данным NASA в радиусе 17 световых лет от Солнца существует 45 звёзд. В насчитывается более 200 миллиардов звёзд. Некоторые из них настолько тусклые, что их почти невозможно обнаружить. Возможно, с новыми технологиями учёные найдут звёзды ещё ближе к нам.

Название прочитанной вами статьи "Ближайшая звезда к Солнцу" .

Звезды являются самым распространенным типом небесных тел во Вселенной. Звезд до 6-й звездной величины насчитывается около 6000, до 11-й звездной величины примерно миллион, а до 21-й звездной величины их на всем небе около 2 млрд.

Все они, как и Солнце, являются горячими самосветящимися газовыми шарами, в недрах которых выделяется огромная энергия. Однако звезды даже в самые сильные телескопы видны как светящиеся точки, так как они находятся очень далеко от нас.

1. Годичный параллакс и расстояния до звезд

Радиус Земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звезд и для определения расстояний до них. Еще во времена Коперника было ясно, что если Земля действительно обращается вокруг Солнца, то видимые положения звезд на небе должны меняться. За полгода Земля перемещается на величину диаметра своей орбиты. Направления на звезду с противоположных точек этой орбиты должны различаться. Иначе говоря, у звезд должен быть заметен годичный параллакс (рис. 72).

Годичным параллаксом звезды ρ называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), если она перпендикулярна лучу зрения.

Чем больше расстояние D до звезды, тем меньше ее параллакс. Параллактическое смещение положения звезды на небе в течение года происходит по маленькому эллипсу или кругу, если звезда находится в полюсе эклиптики (см. рис. 72).

Коперник пытался, но не смог обнаружить параллакс звезд. Он правильно утверждал, что звезды слишком далеки от Земли, чтобы существовавшими тогда приборами можно было заметить их параллактическое смещение.

Впервые надежное измерение годичного параллакса звезды Веги удалось осуществить в 1837 г. русскому академику В. Я. Струве. Почти одновременно с ним в других странах определили параллаксы еще у двух звезд, одной из которых была α Центавра. Эта звезда, которая в СССР не видна, оказалась ближайшей к нам, ее годичный параллакс ρ= 0,75". Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Неудивительно, что так долго не могли заметить у звезд столь малые угловые смещения.

Расстояние до звезды где а - большая полуось земной орбиты. При малых углах если р выражено в секундах дуги. Тогда, приняв а = 1 а. е., получим:


Расстояние до ближайшей звезды α Центавра D=206 265" : 0,75" = 270 000 а. е. Свет проходит это расстояние за 4 года, тогда как от Солнца до Земли он идет только 8 мин, а от Луны около 1 с.

Расстояние, которое свет проходит в течение года, называется световым годом . Эта единица используется для измерения расстояния наряду с парсеком (пк).

Парсек - расстояние, с которого большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1".

Расстояние в парсеках равно обратной величине годичного параллакса, выраженного в секундах дуги. Например, расстояние до звезды α Центавра равно 0,75" (3/4"), или 4/3 пк.

1 парсек = 3,26 светового года = 206 265 а. е. = 3*10 13 км.

В настоящее время измерение годичного параллакса является основным способом при определении расстояний до звезд. Параллаксы измерены уже для очень многих звезд.

Измерением годичного параллакса можно надежно установить расстояние до звезд, находящихся не далее 100 пк, или 300 световых лет.

Почему не удается точно измерить годичный параллакс более o далеких звезд?

Расстояние до более далеких звезд в настоящее время определяют другими методами (см. §25.1).

2. Видимая и абсолютная звездная величина

Светимость звезд. После того как астрономы получили возможность определять расстояния до звезд, было установлено, что звезды отличаются по видимой яркости не только из-за различия расстояния до них, но и вследствие различия их светимости .

Светимостью звезды L называется мощность излучения световой энергии по сравнению с мощностью излучения света Солнцем.

Если две звезды имеют одинаковую светимость, то звезда, которая находится дальше от нас, имеет меньшую видимую яркость. Сравнивать звезды по светимости можно лишь в том случае, если рассчитать их видимую яркость (звездную величину) для одного и того же стандартного расстояния. Таким расстоянием в астрономии принято считать 10 пк.

Видимая звездная величина, которую имела бы звезда, если бы находилась от нас на стандартном расстоянии D 0 =10 пк, получила название абсолютной звездной величины М.

Рассмотрим количественное соотношение видимой и абсолютной звездных величин звезды при известном расстоянии D до нее (или ее параллаксе р). Вспомним сначала, что разность в 5 звездных величин соответствует различию яркости ровно в 100 раз. Следовательно, разность видимых звездных величин двух источников равна единице, когда один из них ярче другого ровно в раз (эта величина примерно равна 2,512). Чем ярче источник, тем его видимая звездная величина считается меньшей. В общем случае отношение видимой яркости двух любых звезд I 1:I 2 связано с разностью их видимых звездных величин m 1 и m 2 простым соотношением:


Пусть m - видимая звездная величина звезды, находящейся на расстоянии D. Если бы она наблюдалась с расстояния D 0 = 10 пк, ее видимая звездная величина m 0 по определению была бы равна абсолютной звездной величине М. Тогда ее кажущаяся яркость изменилась бы в

В то же время известно, что кажущаяся яркость звезды меняется обратно пропорционально квадрату расстояния до нее. Поэтому

(2)

Следовательно,

(3)

Логарифмируя это выражение, находим:

(4)

где р выражено в секундах дуги.

Эти формулы дают абсолютную звездную величину М по известной видимой звездной величине m при реальном расстоянии до звезды D. Наше Солнце с расстояния 10 пк выглядело бы примерно как звезда 5-й видимой звездной величины, т. е. для Солнца М ≈5.

Зная абсолютную звездную величину М какой-нибудь звезды, легко вычислить ее светимость L. Принимая светимость Солнца L =1, по определению светимости можно записать, что

Величины М и L в разных единицах выражают мощность излучения звезды.

Исследование звезд показывает, что по светимости они могут отличаться в десятки миллиардов раз. В звездных величинах это различие достигает 26 единиц.

Абсолютные величины звезд очень высокой светимости отрицательны и достигают М =-9. Такие звезды называются гигантами и сверхгигантами. Излучение звезды S Золотой Рыбы мощнее излучения нашего Солнца в 500 000 раз, ее светимость L=500 000, наименьшую мощность излучения имеют карлики с М=+17 (L=0,000013).

Чтобы понять причины значительных различий в светимости звезд, необходимо рассмотреть и другие их характеристики, которые можно определить на основе анализа излучения.

3. Цвет, спектры и температура звезд

Во время наблюдений вы обратили внимание на то, что звезды имеют различный цвет, хорошо заметный у наиболее ярких из них. Цвет нагреваемого тела, в том числе и звезды, зависит от его температуры. Это дает возможность определить температуру звезд по распределению энергии в их непрерывном спектре.

Цвет и спектр звезд связаны с их температурой. В сравнительно холодных звездах преобладает излучение в красной области спектра, отчего они и имеют красноватый цвет. Температура красных звезд низкая. Она растет последовательно при переходе от красных звезд к оранжевым, затем к желтым, желтоватым, белым и голубоватым. Спектры звезд крайне разнообразны. Они разделены на классы, обозначаемые латинскими буквами и цифрами (см. задний форзац). В спектрах холодных красных звезд класса М с температурой около 3000 К видны полосы поглощения простейших двухатомных молекул, чаще всего оксида титана. В спектрах других красных звезд преобладают оксиды углерода или циркония. Красные звезды первой величины класса М - Антарес , Бетельгейзе .

В спектрах желтых звезд класса G , к которым относится и Солнце (с температурой 6000 К на поверхности), преобладают тонкие линии металлов: железа, кальция, натрия и др. Звездой типа Солнца по спектру, цвету и температуре является яркая Капелла в созвездии Возничего.

В спектрах белых звезд класса А , как Сириус, Вега и Денеб, наиболее сильны линии водорода. Есть много слабых линий ионизованных металлов. Температура таких звезд около 10 000 К.

В спектрах наиболее горячих, голубоватых звезд с температурой около 30 000 К видны линии нейтрального и ионизованного гелия.

Температуры большинства звезд заключены в пределах от 3000 до 30 000 К. У немногих звезд встречается температура около 100 000 К.

Таким образом, спектры звезд очень сильно отличаются друг от друга и по ним можно определить химический состав и температуру атмосфер звезд. Изучение спектров показало, что в атмосферах всех звезд преобладающими являются водород и гелий.

Различия звездных спектров объясняются не столько разнообразием их химического состава, сколько различием температуры и других физических условий в звездных атмосферах. При высокой температуре происходит разрушение молекул на атомы. При еще более высокой температуре разрушаются менее прочные атомы, они превращаются в ионы, теряя электроны. Ионизованные атомы многих химических элементов, как и нейтральные атомы, излучают и поглощают энергию определенных длин волн. Путем сравнения интенсивности линий поглощения атомов и ионов одного и того же химического элемента теоретически определяют их относительное количество. Оно является функцией температуры. Так, по темным линиям спектров звезд можно определить температуру их атмосфер.

У звезд одинаковой температуры и цвета, но разной светимости спектры в общем одинаковы, однако можно заметить различия в относительных интенсивностях некоторых линий. Это происходит от того, что при одинаковой температуре давление в их атмосферах различно. Например, в атмосферах звезд-гигантов давление меньше, они разреженнее. Если выразить эту зависимость графически, то по интенсивности линий можно найти абсолютную величину звезды, а далее по формуле (4) определить расстояние до нее.

Пример решения задачи

Задача. Какова светимость звезды ζ Скорпиона, если ее видимая звездная величина 3, а расстояние до нее 7500св. лет?


Упражнение 20

1. Во сколько раз Сириус ярче, чем Альдебаран? Солнце ярче, чем Сириус?

2. Одна звезда ярче другой в 16 раз. Чему равна разность их звездных величин?

3. Параллакс Веги 0,11". Сколько времени свет от нее идет до Земли?

4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе?

5. Во сколько раз звезда 3,4 звездной величины слабее, чем Сириус, имеющий видимую звездную величину -1,6? Чему равны абсолютные величины этих звезд, если расстояние до обеих составляет 3 пк?

6. Назовите цвет каждой из звезд приложения IV по их спектральному классу.