Свет и цвет в среде. Свет и цвет: основы основ

При составлении букета надо обращать внимание не только на набор цветов и декоративных элементов, значение цветка, а и на то, как он будет выглядеть при разном освещении и как цветовая гамма влияет на человека.

И. Ньютон в 1666 году, используя солнечный луч и призму, определил цветовой спектр. Красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый – это те цвета, которые составляют собой белый свет. Иначе говоря, свет – это видимая человеческим глазом область электромагнитных излучений (электромагнитная энергия). Как мы знаем со школы, излучения исходят от основного источника – Солнца и подразделяются на инфракрасные, ультрафиолетовые и видимые для глаз волны. Последний вид излучений – это и есть тот белый свет, который мы видим.

Цветовой спектр Ньютона

Начиная от древнегреческих ученых, люди пытались найти ответ на вопросы ”что такое свет?”, ”откуда он берется?” и ”как он распространяется?”. В наше время, когда ученые имеют намного больше возможностей, чем Ньютон и другие, наука говорит о двойственности природы света. Проникая через отверстие, он ведет себя как волна, а попадая, например, на металлическую поверхность, ведет себя как частица – фотон – бомбардирует эту поверхность.

Световые волны

Под волной понимают имеющую поступательное движение часть колебания. Они могут по- разному преломляться и вызывать различные цветовые ощущения. Это зависит от их длины.

Поток света, достигнув поверхности тела, делится на три части: отраженную, пропущенную и поглощенную.

Тела могут быть прозрачными и непрозрачными. Только прозрачным телам свойственно отражать, поглощать и пропускать свет через себя. Цвет предмета мы определяем после того, как наш глаз зафиксирует взаимодействие света и предмета, которое зависит от длины волн отраженного света. Белый лист – белый потому, что отражает все цвета, зеленый будет отражать преимущественно зеленые цвета, синий – синие и т.д. если предмет поглощает все цвета, то он воспринимается глазом как черный.

Часть фиолетовых, синих, голубых лучей задерживается и рассеивается воздушной средой. В результате мы видим синее небо и розовый снег на вершинах гор.

Отражение бывает зеркальным (угол отражения луча такой же, как и падения) и диффузионным, при котором луч отражения может быть разным. Поверхности, с которыми контактирует человек, отражают лучи частично зеркально, а частично диффузионно. Блестящие и глянцевые поверхности дают четкое зеркальное отражение цвета, а матовым и шероховатым поверхностям свойственна диффузия. Именно потому глаз видит не так четко отображенный источник света.

Источники света

Естественные

Естественные.Солнце и другие составные Космоса. Но свечение планет, звезд и Луны мы видим искаженными из-за атмосферы.

Искусственные

Искусственные. К ним относятся разного рода лампы, лазеры и др. При освещении предмета обычной лампой накалывания он приобретает теплый желтоватый оттенок (вольфрамовая нить нагревается до желтого цвета). Использование люминесцентных ламп известно холодным свечением (светят преимущественно ультрафиолетом, а видимый спектр составляют фиолетовый, синий и зеленый цвета, а тепловое излучение очень мало). Галогенные лампы состоят тоже из вольфрамовой нити, пары галогенов, которые не находятся в вакууме (в отличие от устаревших лампочек Ильича). Цвета при таком освещении становятся ярче и сочнее, жизнерадостнее.

Лазер

Самым полезным штучным источником света является лазер. В лазерной трубке под воздействием электричества из атомов высвобождаются фотоны. Они вылетают из нее в виде узкого луча света или в какой-нибудь другой форме электромагнитного излучения. Оно зависит от вещества, которое используется для получения фотонов.

Ежедневно человек сталкивается с множеством факторов внешней среды, воздействующих на него. Одним из таких факторов, оказывающих сильное влияние, является цвет. Известно, что цвет может быть виден человеком лишь при свете, в темноте мы не видим никаких цветов. Световые волны воспринимаются человеческим глазом. Мы видим предметы потому, что они отражают свет и потому, что наш глаз способен воспринять эти отраженные лучи. Лучи солнечного или электрического света – световые волны в зрительном аппарате человека преобразуется в ощущение. Это преобразование происходит в три этапа: физический , физиологический , психологический .

Физический – излучение света; физиологический – воздействие цвета на глаз и преобразование его в нервные импульсы, идущие в мозг человека; психологический – восприятие цвета.

Физический этап формирования зрительного восприятия заключается в преобразовании энергии видимого излучения различными средами в энергию измененного потока излучения и изучается физикой.

Видимое излучение называют светом. Свет – видимая часть электромагнитного спектра, это частный случай электромагнитного излучения . Физики шутят, что свет – самое темное место в физике. Свет имеет двойственную природу: при распространении он ведет себя как волна, а при поглощении и излучении – как поток частиц. Итак, свет принадлежит пространству, а цвет – предмету. Цвет – это ощущение, которое возникает в органе зрения человека при воздействии на него света .

В цветоведении принято рассматривать свет как электромагнитное волновое движение. В области видимого излучения каждой длине волны соответствует ощущение какого-либо цвета.

В спектре белого солнечного света различают семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Глаз среднего наблюдателя способен различить в спектре белого света около 120 цветов. Для удобства обозначения цветов принято деление спектра оптического излучения на три зоны:

Длинноволновую – от красного до оранжевого;

Средневолновую – от оранжевого до голубого;

Коротковолновую – от голубого до фиолетового.

Это деление оправдывается качественными различиями между цветами, входящими в различные области спектра. Каждый цвет спектра характеризуется своей длиной волны (таблица 1), т.е. он может быть точно задан длиной волны или частотой колебаний. Самые короткие волны – фиолетовые, самые длинные – красные. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн зрительным аппаратом человека.

Глаз способен воспринимать волны длиной от 400 до 700 нанометров (нанометр – одна миллиардная метра, единица измерения длины световых волн).

Таблица 1. Соответствие диапазонов длин волн ощущениям цветов

С двух сторон от видимой части спектра находятся ультрафиолетовые и инфракрасные области, которые не воспринимаются человеческим глазом, но могут улавливаться специальным оборудованием (таблица 2). С помощью инфракрасного излучения работают камеры ночного видения, а ультрафиолетовое излучение хоть и невидимо человеческому глазу, но может нанести зрению значительный вред. Скорость распространения всех видов волн электромагнитных колебаний равна приближенно 300 000 км/с.

Таблица 2. Разновидности электромагнитных излучений

Световые волны попадают на сетчатку глаза, где воспринимаются светочувствительными рецепторами, передающими сигналы в мозг, и уже там складывается ощущение цвета. Это ощущение зависит от длины волн и интенсивности излучения. А все предметы, которые нас окружают, могут или излучать свет (цвет), или отражать или пропускать падающий на них свет частично или полностью.

Например, если трава зеленая, это значит, что из всего диапазона волн она отражает в основном волны зеленой части спектра, а остальные поглощает. Когда мы говорим «эта чашка красная», то мы на самом деле имеем в виду, что она поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создается при ее освещении . Таким образом, красная чашка отражает в основном волны красной части спектра. Если мы говорим, что какой-либо объект имеет какой-либо цвет, это значит, что на самом деле этот объект (или его поверхность) имеет свойство отражать волны определенной длины, и отраженный свет воспринимается как цвет предмета. Если предмет полностью задерживает падающий свет, он будет казаться нам черным, а если отражает все падающие лучи – белым. Правда, последнее утверждение будет верным лишь в том случае, если свет будет белым, неокрашенным. Если же свет приобретает какой-либо оттенок, то и отражающая поверхность будет иметь такой же оттенок. Это можно наблюдать на закате солнца, которое окрашивает все вокруг багряными тонами, или в сумеречный зимний вечер, когда снег кажется синим. Эксперимент с использованием окрашенного цвета довольно любопытно описывает И. Иттен в своей книге «Искусство цвета» .

Каким образом зрительный аппарат распознает эти волны, до настоящего времени еще полностью не известно. Мы знаем только то, что различные цвета возникают в результате количественных различий светочувствительности.

В данном контексте логично было бы напомнить еще одно определение цвета. Цвет – это различное число колебаний световых волн данного источника света, воспринимаемых нашим глазом в виде определенных ощущений, которые мы называем цветовыми .

Ощущение цвета создается при условии преобладания в цвете волн определенной длины. Но если интенсивность всех волн одинаковая, то цвет воспринимается как белый или серый. Не излучающий волн предмет воспринимается как черный. В связи с этим все зрительные ощущения цвета разделяются на две группы: хроматические и ахроматические.

Ахроматическими называют белый, черный цвета и все серые цвета . В их спектр входят лучи всех длин волн в равной степени. Если же возникает преобладание какой-то одной длины волны, то такой цвет становится хроматическим. К хроматическим цветам относятся все спектральные и другие природные цвета .

2.2. Основные характеристики цвета

Для однозначности определения (спецификации) цвета часто используется система психофизических характеристик. К ним относятся следующие характеристики:

Цветовой тон,

Светлота;

Насыщенность.

Цветовой тон – качество цвета, позволяющее дать ему название (например, красный, синий и т.д.) . Интересно, что нетренированный глаз при ярком дневном освещении различает до 180 цветовых тонов, а развитый человеческий глаз способен различать около 360 оттенков цвета. Ахроматические цвета не имеют цветового тона.

Светлота – это степень отличия данного цвета от черного . В спектральных цветах самым светлым является желтый цвет, самым темным – фиолетовый. В пределах одного цветового тона степень светлоты зависит от применения белого. Светлота – степень, присущая как хроматическим, так и ахроматическим цветам . Оттенки одного цвета различной светлоты называют монохромными.

Насыщенность – это степень отличия хроматического цвета от равного по светлоте ахроматического. Так, если чистый спектральный цвет, например красный, принять за 100%, то при смешении 70% красного и 30% белого насыщенность полученной смеси будет равна 70%. От насыщенности зависит степень восприятия цвета.

Наиболее насыщены цвета спектра, причем самый насыщенный из них фиолетовый, а менее всего насыщен желтый.

Ахроматические цвета можно назвать цветами нулевой насыщенности.

Натренированный человеческий глаз может различить около 25 оттенков цвета по насыщенности, от 65 оттенков – по светлоте при высокой освещенности и до 20 – при пониженной.

Собственные и несобственные качества цвета. Цвет, тон, светлота, насыщенность называют собственнымикачествами цвета. Собственные качества – это те качества, которые ему объективно присущи.

Несобственные качества цветам объективно не присущи, а возникают вследствие эмоциональной реакции при их восприятии . Мы говорим, что цвета бывают теплые и холодные, легкие и тяжелые, глухие и звонкие, выступающие и отступающие, мягкие и жесткие. Эти характеристики важны для художника, так как посредством их усиливается выразительность и эмоциональный настрой произведения .

Изменение объемности изображения зависит от насыщенности цвета (рис. 1) Активно насыщенные цвета делают изображение более объемным, нежели цвета слабо насыщенные или затемненные. Разбел и затемнение не только снижают активность цвета, но и ослабляют цветовые контрасты между пятнами. Монохромное изображение, так же как и насыщенное, способно активно передать объем, приближенный к ахроматическому варианту .

Рис. 1. Изменение объемности изображения в зависимости от насыщенности цвета:

а – оптимально насыщенные цвета; б – слабонасыщенные (высветленные) цвета; в – ахроматический вариант; г – слабонасыщенные (затемненные) цвета; д – монохромное изображение объекта, рельефность, объем и эмоциональный настрой композиции. При использовании слабонасыщенных цветов (высветленных или затемненных) объем будет чувствоваться меньше, чем при использовании насыщенных.

К атегория: Малярные работы

Свет и цвет в природе

Возможность разложения света была впервые обнаружена Исааком Ньютоном. Узкий луч света, пропущенный им через стеклянную призму, преломился и образовал на стене разноцветную полоску - спектр.

По цветовым признакам спектр можно разделить на две части. В одну часть входят красные, оранжевые, желтые и желто-зеленые цвета, а в другую - зеленые, голубые, синие и фиолетовые.

Длина волн лучей видимого спектра различна и лежит приблизительно в пределах от 380 до 760 нм(ммк). За прёделамп видимой части спектра располагается невидимая его часть. Участки спектра с длиной волны более 780 нм называются инфракрасными, или тепловыми. Они легко обнаруживаются термометром, установленным на этом участке спектра. Участки спектра с длиной волны менее 380 нм называются ультрафиолетовыми. Эти лучи химически активны; они разрушают несветопрочные пигменты и ускоряют старение лакокрасочных пленок.

Световые лучи, исходящие от различных источников света, имеют неодинаковый спектральный состав и поэтому значительно отличаются по цвету. Например, свет обычной электрической лампочки желтее солнечного света. Объясняется это тем, что в спектре луча дневного света преобладают волны, соответствующие синему цвету, в то время как в спектре электрической лампочки с вольфрамовой и особенно с угольной нитью преобладают красные и оранжевые цветовые волны. Поэтому один и тот же предмет может принимать различную окраску в зависимости от того, каким источником света он освещен.

Вследствие этого и окраска комнаты и предметов, находящихся в ней, воспринимается нами при естественном и искусственном освещении с различными цветовыми оттенками.

Поэтому, подбирая красочные составы для окраски, необходимо учитывать условия освещения во время эксплуатации.

Цвет каждого предмета зависит от его физических свойств, т. е. способности отражать, поглощать или пропускать лучи света. Лучи света, падающие на поверхность, делятся на отраженные, поглощенные и пропущенные.

Тела, почти полностью отражающие или поглощающие лучи света, воспринимаются нами как непрозрачные, а тела, пропускающие значительное количество света, - как прозрачные (стекло).

Если поверхность или тело отражает или пропускает в одинаковой степени все лучи видимой части спектра, то такое отражение или пропускание светового потока называется неизбирательным.

Так, предмет кажется черным, если он поглощает в равной степени почти все лучи спектра, и белым, если отражает в равной степени почти все лучи спектра.

Если смотреть на предметы через бесцветное стекло, их цвет останется для нас прежним. Следовательно, бесцветное стекло почти полностью пропускает все цветовые лучи спектра, за исключением незначительного количества отраженного и поглощенного света, также состоящего из всех цветовых лучей спектра.

Если же заменить бесцветное стекло синим, то все предметы за стеклом покажутся синими (синее стекло пропускает в основном только синие лучи спектра, поглощая почти полностью лучи остальных цветов).

Цвет непрозрачных предметов также зависит от отражения и поглощения поверхностью волн различного спектрального состава. Так, предмет кажется синим, если он отражает только синие лучи, а все остальные поглощает; если же предмет отражает красные и поглощает все остальные лучи спектра, он воспринимается как красный, и т. д.

Такое пропускание и поглощение предметами лучей называется избирательным.

Ахроматические и хроматические тона. Существующие в природе цвета по цветовым свойствам можно разделить на две группы: ахроматические, или бесцветные, и хроматические, или цветные.

К ахроматическим тонам относятся белый, черный и целый ряд промежуточных серых тонов.

Группа хроматических цветовых тонов состоит из красных, оранжевых, желтых, зеленых, фиолетовых и бесчисленного множества промежуточных цветов.

Луч света от предметов, окрашенных в ахроматические тона, отражается, не претерпев каких-либо заметных изменений. Поэтому эти тона воспринимаются нами только как белые или черные с целым рядом промежуточных серых оттенков, которые в этом случае зависят исключительно от способности тела поглощать или отражать все лучи спектра. Чем больше света отражает предмет, тем он кажется белее, и чем большее количество света предмет поглощает, тем он кажется чернее.

В природе не существует материала, отражающего или поглощающего все 100% падающего на него света, поэтому нет ни идеально белого, ни идеально черного тона. Самый белый тон имеет порошок химически чистого сернокислого бария, спрессованный в плитку, который отражает 94% падающего на него света; цинковые белила несколько темнее сернокислого бария, свинцовые белила еще темнее и далее, по мере уменьшения белизны, располагаются: гипс, литопонные белила, писчая бумага высшего сорта, мел и т. д. Наиболее темной считается поверхность черного бархата, отражающего около 0,2% света. Таким образом, ахроматические тона отличаются один от другого только светлотой. Человеческий глаз различает около 300 ахроматических оттенков.

Хроматические цвета обладают тремя свойствами: цветовым тоном, светлотой и насыщенностью цвета.

Цветовым тоном называют такое свойство цвета, которое позволяет глазу человека воспринимать и определять красный, желтый, синий и другие спектральные цвета. Он определяется длиной волны. Цветовых тонов существует значительно больше, чем названий для них.

Основным, естественным рядом цветовых тонов является солнечный спектр, в котором цветовые тона располагаются так, что постепенно и непрерывно переходят один в другой; красный через оранжевый переходит в желтый, далее через светло-зеленый и темно-зеленый - в голубой, затем в синий и, наконец, в фиолетовый.

Светлота - это свойство цветной поверхности отражать большее или меньшее количество падающих лучей света. При большем отражении света мы воспринимаем цвет поверхности как светлый, при меньшем - как темный. Это свойство является общим для всех тонов, как хроматических, так и ахроматических, поэтому по светлоте можно сравнивать любые тона. К хроматическому цвету любой светлоты легко подобрать подобный ему по светлоте ахроматический тон.

Для практических целей при определении светлоты пользуются так называемой серой шкалой, которая состоит из набора выкрасок ахроматических тонов, постепенно переходящих от наиболее черного, темно-серого, серого и светло-серого к почти белому. Эти выкраски наклеены между отверстиями в картоне, против каждой выкраски обозначен коэффициент отражения данного тона. Шкалу накладывают на исследуемую поверхность и, сопоставляя ее с вы-краской, просматриваемой через отверстия шкалы, определяют светлоту.

Насыщенностью хроматического цвета называют степень отличия этого цвета от ахроматического серого, равного ему по светлоте.

Это свойство хроматических цветов можно представить яснее, прибавляя к какому-либо спектральному цвету, например желтому, немного серого, равного ему по светлоте. В этом случае цветовой тон не изменится, так как прибавляемый ахроматический тон не имеет цветового тона, не изменится и светлота цветового тона, так как добавляемый серый равен ему по светлоте. Но полученный желтый цвет будет заметно отличаться от первоначального-он посереет, станет менее желтым. Продолжая дальнейшее прибавление серого тона к желтому, получают ряд промежуточных желтых цветовых тонов, все более серых, вплоть до того, что желтый цвет будет едва заметным. Таким образом, при прибавлении к желтому цвету серого насыщенность желтого цвета непрерывно снижается до минимально возможного.

Предельно насыщенными, а следовательно, и чистыми являются цвета спектра. Остальные хроматические цвета тем насыщенней, чем чище и ближе к спектральным.

Снижение насыщенности цветовых тонов достигается прибавлением не только серого тона, но и любого ахроматического - от черного до белого. При прибавлении черного получают темно-зеленые, темно-синие, коричневые, а белого - розовые, бледно-зеленые, светло-голубые тона. При постепенном прибавлении белого одновременно с уменьшением насыщенности возрастает светлота.

Смешение цветов. Восприятие цветов, которые мы видим вокруг себя, вызывается действием на глаз сложного цветового потока, состоящего из световых волн различной длины. Но впечатление пестроты и многоцветности не создается, гак как глаз обладает свойством смешивать разнообразные цвета.

Для изучения законов смешивания цветов пользуются приборами и приемами, дающими возможность смешивать цвета в различной пропорции.

С помощью трех проекционных фонарей с лампами достаточной мощности и трех светофильтров - синего, зеленого и красного - можно получить различные смешанные цвета. Для этого перед объективом каждого фонаря устанавливают светофильтры и направляют цветовые пучки на белый экран. При попарном наложении цветовых пучков на один и тот же участок получают три разнообразных цвета: сочетание синего и зеленого дает голубое пятно, зеленого и красного - желтое, красного и синего - пурпурное. В центре, где все три цветовые пучка взаимно перекрываются, при соответствующей регулировке интенсивности световых пучков с помощью диафрагм или серых светофильтров можно получить белое пятно.

Простой прибор для смешивания цветов - это вертушка-юла. Два бумажных кружка разного цвета, надрезанные по радиусу и имеющие одинаковый диаметр, вставляют один в другой. При этом образуется двухцветный диск, в котором, перемещая кружки, можно изменять величину цветных секторов. Собранный диск надевают на ось вертушки и приводят в движение. От быстрого чередования цвет двух секторов сливается в один. Создается впечатление, что кружок одноцветный. В лабораторных условиях обычно пользуются вертушкой с электродвигателем, имеющим скорость вращения не менее 2000 об/мин.

С помощью вертушки можно смешать несколько цветов, совмещая одновременно соответствующее количество разноцветных дисков.

В практике широко применяют пространственное смешение цветов, которое основано на получении зрительного эффекта в результате смешения двух или более цветов, расположенных близко один к другому и рассматриваемых с достаточно большого расстояния.

На принципе пространственного смешения цветов построено применение в отделочных работах накатывания разноцветных рисунков по цветному фону, набрызг и т. п.

Описанные способы смешения цветов являются оптическими, так как цвета складываются или сливаются в один суммарный цвет на сетчатке нашего глаза. Этот вид смешения носит название слагательного, или аддитивного.

Но не всегда при смешении двух хроматических цветов получается смешанный хроматический цвет. В отдельных случаях, если один из хроматических цветов дополнить специально подобранным к нему другим хроматическим цветом и смешать их в строго определенной пропорции, может получиться ахроматический тон. Если при этом были использованы хроматические цвета, близкие по чистоте цветового тона к спектральным, получающийся новый цвет окажется белым или светло-серым. Если пропорциональность при смешении нарушена, цветовой тон окажется того цвета, которого было взято больше, причем насыщенность тона понизится.

Два хроматических цвета, образующих при смешении в определенной пропорции ахроматический тон, называются взаимно дополнительными цветами. Смешение дополнительных цветов никогда не может дать нового цветового тона. В природе существует множество пар взаимно дополнительных цветов, но для практических целей из основных пар дополнительных цветов создают цветовой круг из восьми цветов, в котором взаимно дополнительные цвета размещают на противоположных концах одного диаметра.

В этом круге красному цвету соответствует дополнительный голубовато-зеленый, оранжевому - голубой, желтому - синий, желто-зеленому- фиолетовый. Следует отметить, что в любой паре дополнительных цветов один всегда принадлежит к группе теплых, а другой - к группе холодных.

В зависимости от того, в пределах какого интервала расположены цветовые тона, их сочетания приобретают большую или меньшую гармонию. Наиболее гармоничны цветовые тона, расположенные в пределах больших и малых интервалов, наименее - в пределах средних интервалов (1/4 окружности).

Помимо слагательного существует вычитательное, или механическое, смешение цветов. Этот вид смешения в отличие от оптического состоит в механическом смешении красок непосредственно на палитре, красочных составов - в емкостях или же в нанесении двух красочных прозрачных слоев один на другой (лессировка).

При механическом смешении красок получается не оптическое сложение цветных лучей на сетчатке глаза, а наоборот, вычитание из белого луча, освещающего нашу цветную смесь, тех лучей, которые поглощаются цветными частицами красок. Так, при освещении белым лучом света предмета, окрашенного цветной смесью пигментов синего и желтого цвета, например берлинской лазурью и желтым кадмием, синие частицы берлинской лазури поглотят красные, оранжевые и желтые лучи, а желтые частицы кадмия - фиолетовые, синие и голубые. Непоглощенными останутся зеленые и близкие к ним голубовато-зеленые и желто-зеленые лучи, которые, отразившись от предмета, и будут восприняты сетчаткой нашего глаза.

Примером вычитательного смешения цветов может служить луч света, пропущенный через три стекла - желтого, голубого и пурпурного цветов, - поставленных одно за другим, и направленный на белый экран. В местах перекрытия двух стекол - пурпурного и желтого - получится красное пятно, желтого и голубого - зеленое, голубого и пурпурного - синее. В местах же одновременного перекрытия трех цветов появится черное пятно.

Количественная оценка цвета. Для цветового тона, чистоты цвета и отражения цветом света установлены количественные оценки.

Цветовой тон определяется длиной его волны и лежит в пределах от 380 до 780 нм. Условно цветовой тон обозначают греческой буквой к (ламбда).

Такое определение цвета можно изобразить графически в виде диаграммы, в свое время построенной Исааком Ньютоном. Диаграмма представляет собой окружность, по которой в спектральной последовательности расположены основные цвета спектра. Круг замыкается смешанным красно-фиолетовым (пурпурным) цветом. В центре круга помещается белый тон с Р = 0,0. От центра к основной окружности расположились на равном расстоянии пять кон-Центрических кругов с отметками, обозначающими чистоту спектральных цветов, - 0,2; 0,4; 0,6; 0,8. По радиусам, идущим от центра к части окружности, обозначающей тот или иной спектральный цвет, располагается этот же спектральный цвет, но с различной чистотой от белого до спектрально чистого. На рис. 55 точкой обозначено расположение на диаграмме светло-оранжевого цвета с длиной волны к = 600 нм и чистотой цвета Р = 0,4.

В настоящее время действует система графического определения цвета, построенная в прямоугольных координатах на основе трех основных цветов - красного, зеленого и синего.

Рис. 1. Схема цветового круга

Третья количественная оценка цвета - коэффициент отражения цветом света, который условно обозначается греческой буквой g (ро). Он всегда меньше единицы. Коэффициенты отражения окрашенных или облицованных различными материалами поверхностей оказывают огромное влияние на освещенность помещений и всегда принимаются во внимание при проектировании отделки зданий различного назначения. С увеличением чистоты цвета коэффициент отражения уменьшается, и наоборот, с потерей цветом чистоть! и приближением его к белому коэффициент отражения увеличивается.

Рабочим, занимающимся отделкой помещений, необходимо знать коэффициенты отражения света различными материалами, используемыми при окрасках, оклеивании обоями, облицовке поверхностей.

При окраске и облицовке поверхностей применяют цвета, отражающие свет в следующих процентах: потолки - 70-85; стены (верхняя часть) -60-80; стены (панели) -50-65; мебель и оборудование- 50-65; полы - 30-50. При этом матовые окраски и облицовки с диффузным (рассеянным) отражением света создают условия наиболее равномерного (без бликов) освещения, что обеспечивает нормальные условия для органов зрения.



- Свет и цвет в природе

Введение

Значение цвета в жизни человека велико и многообразно. Все, что мы видим, мы видим при помощи цвета и благодаря цвету. Человеческому глазу доступны 40.000 цветов и их оттенков. Кроме цвета, размеров и формы, занимаемых тем или иным цветом, человек ничего не видит.

Любой предмет имеет свой цвет. Некоторые объекты мы узнаем только благодаря цвету. Представьте три круглых по форме и одинаковых по величине объекта. Мы можем превратить их в оранжевый апельсин, красный помидор или зеленое яблоко, окрасив их в соответствующие цвета. Весь мир во всей его красоте, форму и материал, пространство и освещение мы видим благодаря разнообразию цвета.

Проблемами цвета занимается целый ряд наук и научных дисциплин, каждая из которых изучает цвет с интересующей ее стороны. Физика изучает энергетическую природу цвета, физиология – процесс восприятия цвета человеческим глазом и превращения его в цвет, психология – проблему восприятия цвета и воздействие его на психику, способность вызывать различные эмоции, биология – значение и роль цвета в жизнедеятельности живых и растительных организмов. Совокупность всех этих наук, изучающих цвет с разных точек зрения, носит название научного цветоведения. Живописное изображение предмета, объектов и явлений природы основывается на цвете, который воспринимает глаз художника в момент наблюдения. Результат восприятия этого цвета определяется как объективными (существующими в природе цветовыми качествами предметов и явлений природы), так и субъективными факторами – психологией и физиологией зрительного восприятия формы, светлоты и цвета. Знание закономерностей цветовых явлений полезно дизайнеру. Цветоведение не дает рецептов творческих приемов, но объясняет наблюдаемые в природе явления, связанные с цветом. Здесь будет рассказано только об основном, о самом главном в области цветоведения.

§ Природа света и цвета

§ Ахроматические и хроматические цвета

§ Спектральные цвета

§ Цветовой круг

§ Основные, составные и дополнительные цвета.

§ Основные свойства цветов.

§ Локальный цвет.

§ Смешение цветов.

§ Смешивание красок

§ Изменение цветов от освещения

§ Изменение цветов на расстоянии.

§ Законы воздушной перспективы

§ Контраст

§ Несобственные качества цвета

§ Теплые и холодные цвета

§ Пространственные свойства цветов

§ Психофизиологическое воздействие цвета на человека

§ Эмоциональное воздействие цвета на человека

Природа света и цвета

Свет как природное физическое явление представляет собой лучистую энергию, которая в виде электромагнитных колебаний распространяется в пространстве, пока не встретит на своем пути какую-либо поверхность. Эту энергию излучают различные источники: естественные – солнце, луна, звезды и искусственные – огонь, лампы накаливания. Солнце, горящая электрическая лампа, пламя костра – источники собственного света. Луна, Земля, небосвод и все предметы, находящиеся на поверхности Земли (кроме светящихся) – источники отраженного света, который они, в свою очередь, распространяют на соседние объекты. Следовательно, весь видимый мир состоит из предметов, являющихся источниками собственного или отраженного света.



Физической основой, определяющей цвет предмета, служит способность поверхности поглощать, пропускать и отражать падающие на предмет лучи света, состоящего из волн различной длины. Отраженный предметом световой поток, дошедший до сетчатки глаза, оказывает фотохимическое действие на концевые нервные аппараты, заложенные в сетчатке.

Цвет – это свойство предмета вызывать определенное зрительное ощущение в зависимости от длины световой волны солнечного спектра, которую он отражает; это результат отражения света от поверхности предмета и восприятия части отраженного светового излучения зрительным аппаратом человека.

Когда от поверхности предмета отражаются, например, красные лучи солнечного спектра, а другие поглощаются или отражаются в меньшем количестве, мы видим предмет красным. При полном отражении лучей солнечного спектра предмет воспринимается белым или серым, а при почти полном поглощении лучей – черным.

Избирательность в поглощении света определяет постоянную собственную окраску предмета.



Собственный или локальный цвет предмета – условный, лишенный оттенков, основной цвет, свойственный данному предмету.

За каждым предметом в нашем сознании на основании жизненного опыта закрепляется какой-то определенный цвет: лимон – желтый, апельсин – оранжевый, трава – зеленая. Природный цвет предмета хорошо виден при ярком освещении.

В природе собственную одноцветную окраску предметов увидеть трудно. Сохраняя относительное постоянство, собственный цвет в природе изменяется под воздействием следующих факторов:

Контрастного взаимовлияния соседних цветов;

Свойств предмета и его поверхности;

Воздушной среды и расстояния;

Силы и спектрального состава прямого и отраженного света.

Влияние всех этих факторов превращает собственный цвет предметов в обусловленный. Поэтому все основные цвета предметов мы видим с многочисленными цветовыми оттенками. Красную или белую розу нельзя написать только красной и белой краской, к условному цвету собственной окраски обязательно добавляют краски цвета освещения, окружающих предметов и среды. В противном случае изображаемый предмет будет выглядеть безжизненным.

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение - это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр . Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет - всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет - луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) - это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) - красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

Рисунок 3 - Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный - пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света - там мрак, там всё становится черным. Пример тому - иллюстрация 4.

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

Яркость (Brightness)

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии - нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный - алый - бордовый - бурый - черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

Светлость (Lightness)

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный - малиновый - розовый - бледно-розовый - белый.

Насыщенность (Saturation)

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% - это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) - это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 - это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах , в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет . А когда объект отражает почти весь падающий свет, он принимает белый цвет . Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света , которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря - физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

- Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

- Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

- И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета -