Так называемый "парадокс часов" был сформулирован (1912 г., Поль Ланжевен) через 7 лет после создания специальной теории относительности и указывает на некоторые "противоречия" в использовании релятивистксго эффекта замедления времени.. Для удобства речи и для "большей наглядности" парадокс часов формулируют также как "парадокс близнецов". Я также использую эту формулировку. Первоначально парадокс активно обсуждался в научной литературе и особенно много в популярной. В настоящее время парадокс близнецов считается полностью разрешенным, не содержит никаких необъясненных проблем, и практически исчез со страниц научной и даже популярной литературы.
Я привлекаю ваше внимание к парадоксу близнецов потому, что он, вопреки сказанному выше, "все еще содержит" необъясненные проблемы и не только "не разрешен", но и в принципе не может быть разрешен в рамках теории относительности Эйнштейна, т.е. это парадокс не столько "парадокс близнецов в теории относительности", сколько "парадокс самой теории относительности Эйнштейна".
Суть парадокса близнецов состоит в следующем. Пусть П (путешественник) и Д (домосед) братья-близнецы. П отправляется в длительное космическое путешествие, а Д остается дома. Через некоторое время П возвращается. Основную часть пути П движется по инерции, с постоянной скоростью (время на разгон, торможение, остановки пренебрежимо мало по сравнению с общим временем путешествия и им пренебрегаем). Движение с постоянной скоростью относительно, т.е. если П удаляется (приближается, покоится) относительно Д , то и Д также удаляется (приближается, покоится) относительно П назовем это симметрией близнецов. Далее, в соответствии с СТО, время для П , с точки зрения Д , течет медленнее, чем собственное время Д , т.е. собственное время путешествия П меньше, времени ожидания Д . В этом случае говорят, что по возвращению П моложе Д . Это утверждение, само по себе, не является парадоксом, это следствие релятивистского замедления времени. Парадокс же состоит в том, что Д , в силу симметрии, может, с таким же правом , считать себя путешественником, а П домоседом, и тогда Д моложе П .
Общепринятое сегодня (каноническое) разрешение парадокса сводится к тому, что ускорениями П нельзя пренебрегать, т.е. его система отсчета не является инерциальной, в его системе отсчета временами возникают силы инерции, и следовательно никакой симметрии нет. Кроме того, в системе отсчета П ускорение эквивалентно появлению гравитационного поля, в котором время также замедляется (это уже на основании общей теории относительности). Таким образом, время П замедляется как в системе отсчета Д (по СТО, когда П движется по инерции), так и в системе отсчета П (по ОТО, когда он ускоряется), т.е. замедление времени П становится абсолютным. Окончательный вывод : П , по возвращению, моложе Д , и это не является парадоксом!
Таково, повторяем, каноническое разрешение парадокса близнецов. Однако, во всех известных нам подобных рассуждениях не учитывается один "маленький" нюанс релятивистский эффект замедления времени это КИНЕМАТИЧЕСКИЙ ЭФФЕКТ (в статье Эйнштейна первая часть, где выводится эффект замедления времени, так и называется "Кинематическая часть"). Применительно к нашим близнецам это означает, что, во-первых, есть только двое близнецов и НЕТ НИЧЕГО БОЛЕЕ, в частности, нет абсолютного пространства, и во-вторых близнецы (читай эйнштейновские часы) не имеют массы. Это необходимые и достаточные условия формулировки парадокса близнецов. Любые дополнительные условия приводят к "другому парадоксу близнецов". Разумеется, можно формулировать и затем разрешать "другие парадоксы близнецов", но тогда надо, соответственно, использовать "другие релятивистские эффекты замедления времени", например, сформулировать и доказать , что релятивистский эффект замедления времени имеет место только в абсолютном пространстве, или только при условии, что часы имеют массу и т.п. Как известно, ничего подобного в эйнштейновской теории нет.
Пройдемся снова по каноническим доказательствам. П время от времени ускоряется... Ускоряется относительно чего? Только относительно другого близнеца (ничего другого просто нет. Однако, во всех канонических рассуждениях по умолчанию предполагается существование еще одного "действующего лица", которого нет ни в формулировке парадокса, ни в теории Эйнштейна, абсолютного пространства, и тогда П ускоряется относительно этого абсолютного пространства, тогда как Д покоится относительно этого же абсолютного пространства налицо нарушение симметрии). Но кинематически ускорение относительно так же, как и скорость, т.е. если близнец-путешественник ускоряется (удаляется, приближается или покоится) относительно своего брата, то и брат-домосед, точно так же, ускоряется (удаляется, приближается или покоится) относительно своего брата-путешественника, симметрия и в этом случае не нарушается (!) . Никакие силы инерции или гравитационные поля в системе отсчета ускоренного брата не возникают также и по причине отсутствия массы у близнецов. По этой же причине неприменима здесь и общая теория относительности. Таким образом симметрия близнецов не нарушается, и парадокс близнецов остается неразрешенным . в рамках эйнштейновской теории относительности. В защиту такого вывода можно привести и чисто философский довод: кинематический парадокс должен разрешаться кинематически , и негоже привлекать для его разрешения другие, динамические теории, как это делаетcя в канонических доказательствах. Замечу в заключение, что парадокс близнецов это не физический парадокс, но парадокс нашей логики (апория типа апорий Зенона), применяемой к анализу конкретной псевдофизической ситуации. Это, в свою очередь, означает, что любые аргументы типа возможности или невозможности технической реализации такого путешествия, возможной связи между близнецами посредством обмена световыми сигналами с учетом эффекта Доплера и т.п., также не должны привлекаться для разрешения парадокса (в частности, не греша против логики , можем считать время разгона П от нуля до крейсерской скорости, время разворота, время торможения при подлете к Земле сколь угодно малыми, даже "мгновенными").
С другой стороны, сама теория относительности Эйнштейна указывает на еще один, совершенно иной аспект парадокса близнецов. В той же первой статье по теории относительности (СНТ, т.1, с.8) Эйнштейн пишет: "Мы должны обратить внимание на то, что все наши суждения, в которых время играет какую-либо роль, всегда являются суждениями об одновременных событиях (курсив Эйнштейна)". (Мы, в определенном смысле, идем дальше Эйнштейна, полагая одновременность событий необходимым условием реальности событий .) Применительно к нашим близнецам это означает следующее: относительно каждого из них его брат всегда одновременен с ним (т.е. реально существует), что бы с ним ни происходило. Это не означает, что время, прошедшее от начала путешествия, для них одинаково, когда они находятся в разных точках пространства, но абсолютно необходимо должно быть одинаковым, когда они находятся в одной точке пространства. Последнее означает, что их возраст был одинаков в момент начала путешествия (они же близнецы), когда они находились в одной точке пространства, далее их возраст взаимно менялся во время путешествия одного из них в зависимости от его скорости (теорию относительности никто не отменил), когда они находились в разных точках пространства, и снова стал одинаков в конце путешествия, когда они снова оказались в одной точке пространства.. Разумеется, они оба постарели, но процесс старения мог проходить у них по разному, с точки зрения одного или другого, но в конечном счете, они состарились одинаково. Заметим, что эта новая ситуация для близнецов попрежнему симметрична.. Теперь, с учетом последних замечаний, парадокс близнецов становится качественно иным принципиально неразрешимым в рамках специальной теории относительности Эйнштейна.
Последнее (совместно с целым рядом подобных "претензий" к СТО Эйнштейна, см. главу XI нашей книги или аннотацию к ней в статье "Математические начала современной натуральной философии" на этом сайте) неизбежно приводит к необходимости пересмотра специальной теории относительности. Я не рассматриваю свою работу как опровержение СТО и, тем более, не призываю от неё отказаться вообще, но я предлагаю её дальнейшее развитие, предлагаю новую "Специальную теорию относительности (СТО* новая редакция)", в которой, в частности, "парадокса близнецов" просто нет как такового (для тех, кто еще не познакомился со статьей "«Специальные» теории относительности", сообщаю, что в новой специальной теории относительности время замедляется , только когда подвижная инерциальная система приближается к неподвижной, и время ускоряется , когда подвижная система отсчета удаляется от неподвижной, и в итоге ускорение времени в первой половине пути (удаление от Земли) компенсируется замедлением времени во второй половине (приближение к Земле), и нет никаких замедленных старений близнеца-путешественника, никаких парадоксов. Путешественники будущего могут не опасаться, по возвращению, попасть в отдаленное будущее Земли! ). Построены также две принципиально новые теории относительности, не имеющие аналогов, "«Специальная общая» теория относительноси (СОТО)" и "Кватерная Вселенная" (модель Вселенной как "самостоятельная теория относительности"). Статья "«Специальные» теории относительности" опубликована на этом сайте. Я посвятил эту статью предстоящему 100-летию теории относительности . Приглашаю вас высказаться по поводу моих идей, а также по поводу теории относительности в связи с её 100-летием.
Мясников Владимир Макарович [email protected]
Сентябрь 2004 г.
Дополнение (Добавлено октябрь 2007)
"Парадокс" близнецов в СТО*. Никаких парадоксов!
Итак, симметрия близнецов является неустранимой в задаче о близнецах, что в эйнштейновской СТО приводит к неразрешимому парадоксу: то становится очевидным, что модифицированная СТО без парадокса близнецов должна давать результат Т (П ) = Т (Д ) что, кстати, полностью соответствует нашему здравому смыслу. Именно такие выводы получаются в СТО* - новая редакция.
Напомню, что в СТО*, в отличие от эйнштейновской СТО, время замедляется, только когда подвижная система отсчета приближается к неподвижной, и ускоряется, когда подвижная система отсчета удаляется от неподвижной. Формулируется это так (см. , формулы (7) и (8)):
где V - абсолютная величина скоростиУточним, далее, понятие инерциальной системы отсчета, которое учитывает неразрывное единство пространства и времени в СТО*. Я определяю инерциальную систему отсчета (см. Теория относительности, новые подходы, новые идеи. или Пространство и эфир в математике и физике.) как точку отсчета и её окрестность, все точки которой определены из точки отсчета и пространство которой однородно и изотропно. Но неразрывное единство пространства и времени с необходимостью требует, чтобы точка отсчета, зафиксированная в пространстве, была также зафиксирована и во времени, иначе говоря - точка отсчета в пространстве должна быть и точкой отсчета времени.
Так, я рассматриваю две неподвижные системы отсчета, связанные с Д : неподвижную систему отсчета в момент старта (система отсчета провожающего Д ) и неподвижную систему отсчета в момент финиша (система отсчета встречающего Д ). Отличительной особенностью этих систем отсчета является то, что в системе отсчета провожающего Д время течет от точки отсчета в будущее, а путь, пройденный ракетой с П растет, независимо от того куда и как она движется, т.е. в этой системе отсчета П удаляется от Д и в пространстве и во времени. В системе отсчета встречающего Д - время течет из прошлого к точке отсчета и момент встречи приближается, а путь ракеты с П до точки отсчета уменьшается, т.е. в этой системе отсчета П приближается к Д и в пространстве, и во времени.
Вернемся к нашим близнецам. Напоминаю, что я рассматриваю задачу о близнецах как логическую задачу (апорию типа апорий Зенона) в псевдофизических условиях кинематики, т.е. считаю, что П движется все время с постоянной скоростью, полагая время на ускорение при разгоне, торможении и т.п. пренебрежимо малым (нулевым).
Два близнеца П (путешественник) и Д (домосед) обсуждают на Земле предстоящий полет П к звезде Z , находящейся на расстоянии L от Земли, и обратно, с постоянной скоростью V . Расчетное время полета, от старта на Земле до финиша на Земле, для П в его системе отсчета равно T = 2L / V . Но в системе отсчета провожающего Д П удаляется и, следовательно, его время полета (время ожидания его на Земле), равно (см. (!!)), и это время значительно меньше T , т.е. время ожидания меньше времени полета! Парадокс? Разумеется, нет, поскольку этот совершенно справедливый вывод "остался" в системе отсчета провожающего Д . Теперь Д встречает П уже в другой системе отсчета встречающего Д , а в этой системе отсчета П приближается, и время его ожидания равно, в соответствии с (!!!), , т.е. собственное время полета П и собственное время ожидания Д совпадают. Никаких противоречий!
Предлагаю рассмотреть конкретный (разумеется, мысленный) "эксперимент", расписанный по времени для каждого близнеца, и в любой системе отсчета. Для определенности, пусть звезда Z удалена от Земли на расстояние L = 6 световых лет. И пусть П на ракете летит туда и обратно с постоянной скоростью V = 0,6 c . Тогда его собственное время полета T = 2L / V = 20 лет. Вычислим также и (см. (!!) и (!!!)). Договоримся также, что с интервалом в 2 года, в контрольные моменты времени, П будет посылать сигнал (со скоростью света) на Землю. "Эксперимент" состоит в регистрации времени приема сигналов на Земле, их анализе и сравнения с теорией.
Все данные измерений моментов времени приведены в таблице:
1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 2 4 6 8 10 12 14 16 18 20 |
0 1 2 3 4 5 6 7 8 9 10 |
0 1,2 2,4 3,6 4,8 6,0 4,8 3,6 2,4 1,2 0 |
0 2,2 4,4 6,6 8,8 11,0 10,8 10,6 10,4 10,2 10,0 |
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 |
-20,0 -16,8 -13,6 -10,4 -7,2 -4,0 -3,2 -2,4 -1,6 -0,8 0 |
0 3,2 6,4 9,6 12,8 16,0 16,8 17,6 18,4 19,2 20,0 |
В столбцах с номерами 1 - 7 приводятся: 1. Контрольные моменты времени (в годах) в системе отсчета ракеты . Эти моменты фиксируют интервалы времени от момента старта, или показания часов на ракете, на которых установлен "ноль" в момент старта. Контрольные моменты времени определяют на ракете моменты посылки сигнала на Землю. 2. Те же контрольные моменты времени, но в системе отсчета провожающего близнеца (где "ноль" также установлен на момент старта ракеты). Они определяются по (!!) с учетом . 3. Расстояния от ракеты до Земли в световых годах в контрольные моменты времени или время распространения соответствующего сигнала (в годах) от ракеты до Земли 4. в системе отсчета провожающего близнеца . Определяется как контрольный момент времени в системе отсчета провожающего близнеца (столбец 2 3 ). 5. Те же контрольные моменты времени, но теперь в системе отсчета встречающего близнеца . Особенность этой системы отсчета в том, что теперь "ноль" времени определяется в момент финиша ракеты, и все контрольные моменты времени оказываются в прошлом. Приписываем им знак "минус", и с учетом неизменности направления времени (от прошлого к будущему) меняем их последовательность в столбце на противоположный. Абсолютные значения этих моментов времени находятся по соответствующим значениям в системе отсчета провожающего близнеца (столбец 2 ) умножением на (см. (!!!)). 6. Момент приема на Земле соответствующего сигнала в системе отсчета встречающего близнеца . Определяется как контрольный момент времени в системе отсчета встречающего близнеца (столбец 5 ) плюс соответствующее время распространения сигнала от ракеты до Земли (столбец 3 ). 7. Реальные моменты времени приема сигнала на Земле. Дело в том, что Д неподвижен в пространстве (на Земле), но движется в реальном времени, и в момент приема сигнала он уже находится не в системе отсчета провожающего близнеца , но в системе отсчета момента времени приема сигнала . Как определить этот момент реального времени? Сигнал, по условию, распространяется со скоростью света, а это значит, что два события А = {Земля в момент приема сигнала} и В = {точка пространства, в которой находится ракета в момент отправки сигнала} (напоминаю, что событием в пространстве-время называется точка в определенный момент времени) являются одновременными , т.к. Δx = c Δt , где Δx - пространственное расстояние между событиями, а Δt - временнОе, т.е. время распространения сигнала от ракеты до Земли (см. определение одновременности в "Специальные" теории относительности , формула (5)). А это, в свою очередь, означает, что Д , с равным правом, может считать себя как в системе отсчета события А, так и в системе отсчета события В. В последнем случае ракета приближается, и в соответствии с (!!!), все интервалы времени (до этого контрольного момента) в системе отсчета провожающего близнеца (столбец 2 ) следует умножить на и затем прибавить соответствующее время распространения сигнала (столбец 3 ). Сказанное справедливо для любого контрольного момента времени, включая финальный, т.е. момент финиша путешествия П . Так вычисляется столбец 7 . Естественно, реальные моменты приема сигнала не зависят от способа их вычисления, именно об этом говорит фактическое совпадение столбцов 6 и 7 .
Рассмотренный "эксперимент" только подтверждает основной вывод о том, что собственное время полета близнеца-путешественника (его возраст) и собственное время ожидания близнеца-домоседа (его возраст) совпадают и при этом нет никаких противоречий! "Противоречия" возникают лишь в некоторых системах отсчета, например, в системе отсчета провожающего близнеца , но это никак не влияет на окончательный результат, поскольку в этой системе отсчета близнецы в принципе не могут встретиться, тогда как в системе отсчета встречающего близнеца , где близнецы реально встречаются, уже никаких противоречий нет. Повторяю еще раз: Путешественники будущего могут не опасаться, по возвращению на Землю, попасть в её отдаленное будущее!
Октябрь 2007 г.
Сначала давайте разберемся, кто такие двойняшки, а кто такие близнецы. И те, и другие рождаются у одной матери практически одновременно. Но если у двойняшек может быть разный рост, вес, черты лица и характер, то близнецы практически неотличимы. И этому есть строгое научное объяснение.
Дело в том, что при рождении двойни процесс оплодотворения мог пойти двумя путями: либо яйцеклетку оплодотворили одновременно два сперматозоида, либо уже оплодотворенная яйцеклетка разделилась надвое, и каждая ее половинка стала развиваться в самостоятельный плод. В первом случае, о чем не трудно догадаться, рождаются отличные друг от друга двойняшки, во втором - абсолютно похожие один на другого монозиготные близнецы. И хотя эти факты ученым известны давно, причины, провоцирующие появление близнецов, пока до конца не выяснены.
Правда, замечено, что любое стрессовое воздействие может привести к спонтанному делению яйцеклетки и появлению двух одинаковых эмбрионов. Именно этим объясняется увеличение числа рождений близнецов в периоды войн или эпидемий, когда организм женщины испытывает постоянную тревогу. Кроме того, геологические особенности местности тоже влияют на статистику близнецов. Они, например, рождаются чаще в местах с повышенной биопатогенной активностью или в районах рудных месторождений...
Многие люди описывают неопределенное, но постоянное ощущение, будто когда-то у них был близнец, который исчез. Исследователи считают это утверждение не столь странным, как может показаться на первый взгляд. Сейчас уже доказано, что при зачатии развивается гораздо больше близнецов - и однояйцевых, и просто двойняшек, - чем рождается на свет. Исследователи считают, что от 25 до 85% беременностей начинаются с образования двух эмбрионов, но заканчивается рождением одного ребенка.
Вот всего два из тех сотен и тысяч, известных медикам, примеров, которые подтверждают этот вывод...
Тридцатилетнему Морису Томкинсу, жаловавшемуся на частые головные боли, поставили неутешительный диагноз: опухоль мозга. Было решено проводить операцию. Когда же опухоль вскрыли, хирурги остолбенели: это оказалась не злокачественная опухоль, как предполагалось ранее, а не рассосавшиеся остатки тела брата-близнеца. Об этом свидетельствовали обнаруженные в мозгу волосы, кости, мышечная ткань...
Аналогичное образование, только уже в печени, обнаружили у девятилетней школьницы из Украины. Когда опухоль, разросшуюся до размеров футбольного мяча, разрезали, то перед глазами удивленных медиков предстала ужасная картина: изнутри торчали кости, длинные волосы, зубы, хрящи, жировые ткани, куски кожи...
То, что значительная часть оплодотворенных яйцеклеток, действительно, начинают свое развитие с двух зародышей, подтвердили и ультразвуковые исследования протекания беременности у десятков и сотен женщин. Так, в 1973 году американский врач Льюис Хелман сообщил, что из 140 обследованных им рискованных беременностей 22 начинались с двух зародышевых сумок - на 25% больше, чем ожидалось. В 1976 году доктор Сальватор Леви из Брюссельского университета опубликовал свои поразительные статистические данные об ультразвуковых исследованиях 7000 беременных женщин. Наблюдения, проводившиеся в первые 10 недель беременности показали, что в 71% случаев было два зародыша, но при этом рождался только один ребенок. По мнению Леви, второй зародыш обычно без следа исчезал к третьему месяцу беременности. В большинстве случаев, считает ученый, он поглощается материнским организмом. Некоторые ученые высказывают предположение, что, возможно, это естественный путь удаления поврежденного зародыша, благодаря чему сохраняется здоровый.
Приверженцы другой гипотезы объясняют этот феномен тем, что многоплодная беременность заложена в природе всех млекопитающих. Но у крупных представителей класса, в связи с тем, что они рожают более крупных детенышей, на стадии формирования эмбриона она переходит в одноплодную. Еще дальше пошли в своих теоретических построениях ученые, которые утверждают следующее: «да, действительно, оплодотворенная яйцеклетка всегда формирует два зародыша, из числа которых только один, наиболее сильный, выживает. Но другой зародыш вовсе не рассасываются, а поглощаются их выжившим собратом». То есть, на первых этапах беременности в чреве женщины совершается самый настоящий эмбриональный каннибализм. В качестве главного аргументам пользу этой гипотезы при водится тот факт, что на ранних стадиях беременности эмбрионы-близнецы фиксируется гораздо чаще, чем в более поздние периоды. Прежде считалось, что это ошибки ранней диагностики. Теперь же, судя по выше приведенным фактам, это расхождение в статистических данных полностью нашло объяснение.
Иногда исчезнувший близнец дает о себе знать совсем уж оригинальным способом. Когда Патриция Мак-Донелл из Англии забеременела, то узнала, что у нее не один тип крови, а два: 7% крови группы А и 93% - группы 0. Кровь группы А была ее. Но большая часть крови, циркулировавшей по телу Патриции, принадлежала не рожденному брату-близнецу, поглощенному ею в утробе матери. Тем не менее, спустя десятилетия, его останки продолжали вырабатывать свою кровь.
Массу любопытных особенностей демонстрируют близнецы и во взрослом состоянии. Убедиться в этом можно на следующем примере.
«Близнецы Джимы» были разделены сразу после рождения, выросли отдельно и стали сенсацией, когда нашли друг друга. Обоих звали одинаково, оба были женаты на женщинах с именем Линда, с которыми развелись. Когда оба женились во второй раз, у их жен были тоже одинаковое имя - Бетти. У каждого была собака по кличке Той. Оба работали представителями шерифа, а также в «Макдональдсе» и на бензоколонках. Отпуска они проводили на пляже Санкт-Петербурга (Флорида) и ездили на «шевроле». Оба грызли ногти и пили пиво «Miller», а также поставили белые скамейки около дерева в своих садах.
Психолог Томас Дж. Бохард-младший сходству и различию в поведении близнецов посвятил всю свою жизнь. На основании наблюдений за близнецами, с самого раннего детства воспитывавшихся в разных семьях и в различной обстановке, он пришел к выводу, что наследственность играет гораздо большую роль, чем предполагалось ранее, в формировании особенностей личности, ее интеллекта и психики, в восприимчивости к определенным заболеваниям. У многих из обследованных им близнецов, несмотря на существенную разницу в воспитании, обнаружились очень похожие черты поведения.
Например, Джека Юфа и Оскара Сторха, родившихся в 1933 году на Тринидаде, разлучили сразу же после их появления на свет. Они встречались только раз в возрасте чуть старше 20 лет. Им было по 45, когда они вновь увиделись у Бохарда в 1979 году. Оба оказались с усами, в одинаковых по стилю очках в тонкой металлической оправе и голубых рубашках с двойными карманами и погонами. Оскар, воспитанный матерью-немкой и ее семьей в католической вере, во времена фашизма вступил в Гитлерюгенд. Джека вырастил на Тринидаде отец-еврей, и позже он жил в Израиле, где работал в киббуце и служил в израильском флоте. Джек и Оскар обнаружили, что, несмотря на разные условия жизни, у них одинаковые привычки. Например, обоим нравилось громко читать в лифте просто для того, чтобы посмотреть на реакцию окружающих. Оба читали журналы от конца к началу, отличались суровым нравом, носили на запястье резиновую ленту и спускали воду в туалете перед тем, как воспользоваться им. Поразительно похожее поведение продемонстрировали и другие изучаемые пары близнецов. Бриджит Харрисон и Дороти Лоу, родившиеся в 1945 году и разделенные, когда им была неделя от роду, к Бохарду пришли с часами и браслетами на одной руке, двумя браслетами и с семью кольцами - на другой. Позже выяснилось, что у каждой из сестер есть кошка по кличке Тигр, что сына Дороти зовут Ричард Эндрю, а сына Бриджит - Эндрю Ричард. Но более впечатляющим оказался тот факт, что обе, когда им было по пятнадцать лет, вели дневник, а потом, почти одновременно, бросили это занятие. Дневники их были одного типа и цвета. Причем, хотя содержание записей различалось, они велись или пропускались в одни и те же дни. Отвечая на вопросы психологов, многие пары заканчивали ответы в одно и то же время и при ответах часто делали одинаковые ошибки. В ходе исследований выяснилось сходство близнецов в манере говорить, жестикулировать, двигаться. Было установлено также, что однояйцевые близнецы даже спят одинаково, и фазы сна у них совпадают. Предполагается, что у них могут развиваться и одинаковые болезни.
Завершить же этот этюд о близнецах можно словами Луиджи Гелда, который сказал: «Если у одного есть дырка в зубе, то и у другого она в том же зубе или скоро появится».
Основным назначением мысленного эксперимента под названием «Парадокс близнецов» было опровержение логичности и обоснованности специальной теории относительности (СТО). Стоит сразу оговориться, что ни о каком парадоксе на самом деле речи не идёт, а само слово фигурирует в этой теме потому, что суть мысленного эксперимента была изначально неправильно воспринята.
Основная идея СТО
Парадокс (парадокс близнецов) гласит, что «неподвижный» наблюдатель воспринимает процессы движущихся объектов как замедляющиеся. В соответствии с той же теорией инерциальные системы отсчёта (системы, в которых движение свободных тел происходит прямолинейно и равномерно либо они находятся в состоянии покоя) равноправны относительно друг друга.
Парадокс близнецов: кратко
С учётом второго постулата возникает предположение о противоречивости Чтобы разрешить эту проблему наглядно, было предложено рассмотреть ситуацию с двумя братьями-близнецами. Одного (условно - путешественника) отправляют в космический полёт, а другого (домоседа) оставляют на планете Земля.
Формулировка парадокса близнецов при таких условиях обычно звучит так: по оценке домоседа, время на тех часах, которые находятся у путешественника, движется медленнее, а значит, когда он вернётся, его (путешественника) часы будут отставать. Путешественник, напротив, видит, что относительно него движется Земля (на которой находится домосед со своими часами), и, с его точки зрения, именно у его брата время будет идти более медленно.
В действительности оба брата находятся в равных условиях, а значит, когда они окажутся вместе, то на их часах время будет одинаковым. Одновременно по теории относительности отставать должны именно часы брата-путешественника. Такое нарушение очевидной симметричности было рассмотрено как несогласованность положений теории.
Парадокс близнецов из теории относительности Эйнштейна
В 1905 году Альберт Эйнштейн вывел теорему, которая гласит, что при нахождении в точке А пары синхронизированных друг с другом часов можно перемещать одни из них по криволинейной замкнутой траектории с неизменной скоростью до тех пор, пока они вновь не достигнут точки А (и на это будет затрачено, например, t секунд), но в момент прибытия они покажут меньшее время, чем те часы, что оставались неподвижны.
Шесть лет спустя статус парадокса этой теории придал Поль Ланжевен. «Завернутая» в наглядную историю, она скоро приобрела популярность даже среди людей, далёких от науки. По мнению самого Ланжевена, нестыковки в теории объяснялись тем, что, возвращаясь на Землю, путешественник двигался ускоренно.
Ещё через два года Максом фон Лауэ была выдвинута версия о том, что значимы вовсе не моменты ускорения объекта, а тот факт, что он попадает в другую инерциальную систему отсчёта, когда оказывается на Земле.
Наконец в 1918 году Эйнштейн смог сам объяснить парадокс двух близнецов через влияние поля гравитации на течение времени.
Объяснение парадокса
Парадокс близнецов объяснение имеет довольно простое: изначальное предположение о равноправии между двумя системами отсчёта неверно. Путешественник пребывал в инерциальной системе отсчёта не всё время (это же касается и истории с часами).
Как следствие, многие посчитали, что специальную теорию относительности нельзя использовать для правильной формулировки парадокса близнецов, иначе получаются несовместимые друг с другом предсказания.
Всё разрешилось, когда была создана Она дала точное решение для имеющейся задачи и смогла подтвердить, что из пары синхронизированных часов отставать будут именно те, которые находятся в движении. Так изначально парадоксальная задача получила статус рядовой.
Спорные моменты
Существуют предположения о том, что момент ускорения достаточно значим для изменения скорости хода часов. Но в ходе многочисленных экспериментальных проверок было доказано, что под действием ускорения движение времени не ускоряется и не замедляется.
В итоге отрезок траектории, на котором один из братьев ускорялся, демонстрирует только некоторую асимметричность, возникающую между путешественником и домоседом.
Но данное утверждение не может объяснить, почему время замедляется именно у движущегося объекта, а не у того, что остаётся в покое.
Проверка практикой
Парадокс близнецов формулы и теоремы описывают точно, но это для человека некомпетентного довольно сложно. Для тех, кто больше склонен доверять практике, а не теоретическим выкладкам, были проведены многочисленные эксперименты, целью которых было доказать или опровергнуть теорию относительности.
В одном из случаев использовались Они отличаются сверхточностью, и для минимальной рассинхронизации им потребуется не один миллион лет. Помещённые в пассажирский самолёт, они несколько раз облетели Землю и после показали вполне заметное отставание от тех часов, которые никуда не летали. И это притом что скорость передвижения у первого образца часов была далеко не световая.
Другой пример: более продолжительна жизнь мюонов (тяжёлых электронов). Эти элементарные частицы в несколько сотен раз тяжелее обычных, обладают отрицательным зарядом и формируются в верхнем слое земной атмосферы благодаря действию космических лучей. Скорость их движения к Земле лишь на малость уступает световой. При их истинной продолжительности жизни (в 2 микросекунды) они распадались бы раньше, чем коснутся поверхности планеты. Но в процессе полёта они живут в 15 раз дольше (30 микросекунд) и всё-таки достигают цели.
Физическая причина парадокса и обмен сигналами
Парадокс близнецов физика объясняет и более доступным языком. Пока происходит полёт, оба брата-близнеца находятся вне зоны досягаемости друг для друга и не могут на практике удостовериться в том, что их часы движутся синхронно. Точно определить, насколько замедляется движение часов у путешественника, можно, если проанализировать сигналы, которые они будут посылать друг другу. Это условные сигналы «точного времени», выраженные как световые импульсы или видеотрансляция циферблата часов.
Нужно понимать, что передаваться сигнал будет не в настоящем времени, а уже в прошедшем, поскольку распространение сигнала происходит с определённой скоростью и требуется определённое время, чтобы пройти от источника до приёмника.
Правильно оценивать результат сигнального диалога можно только с учётом эффекта Доплера: при удалении источника от приёмника частота сигнала уменьшится, а при приближении - увеличится.
Формулировка объяснения в парадоксальных ситуациях
Для объяснения парадоксов подобных историй с близнецами можно применить два основных способа:
- Внимательное рассмотрение имеющихся логических построений на предмет противоречий и выявление логических ошибок в цепи рассуждений.
- Осуществление детальных вычислений с целью оценки факта торможения времени с точки зрения каждого из братьев.
В первую группу попадают вычислительные выражения, основанные на СТО и вписанные в Здесь подразумевается, что моменты, связанные с ускорением движения, настолько малы по отношению к общей длине полёта, что ими можно пренебречь. В отдельных случаях могут вводить третью инерциальную систему отсчёта, которая продвигается по встречному направлению в отношении путешественника и используется для передачи данных с его часов на Землю.
Во вторую группу входят вычисления, построенные с учётом того, что моменты ускоренного движения всё же присутствуют. Сама эта группа также подразделяется на две подгруппы: в одной применяется гравитационная теория (ОТО), а в другой - нет. Если ОТО задействована, то подразумевается, что в уравнении фигурирует поле гравитации, которое соответствует ускорению системы, и берётся во внимание изменение скорости течения времени.
Заключение
Все обсуждения, связанные с мнимым парадоксом, обусловлены лишь кажущейся логической ошибкой. Как бы ни были сформулированы условия задачи, добиться того, чтобы братья оказались в полностью симметричных условиях, невозможно. Важно учесть, что время замедляется именно на движущихся часах, которым пришлось пройти через смену систем отсчёта, потому что одновременность событий относительна.
Рассчитать, насколько замедлилось время с точки зрения каждого из братьев, можно двумя способами: используя простейшие действия в рамках специальной теории относительности либо ориентируясь на неинерциальные системы отсчёта. Результаты обеих цепей вычислений могут быть взаимно согласованы и в равной степени служат для подтверждения того, что на движущихся часах время идёт медленнее.
На этом основании можно предполагать, что при перенесении мысленного эксперимента в реальность тот, кто займёт место домоседа, действительно состарится быстрее, чем путешественник.
8. Парадокс близнецов
Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории относительности, хранили благоразумное молчание. Но ученые и философы, способные понять теорию относительности, встретили ее с радостью. Мы уже упоминали, как быстро Эддингтон осознал важность достижений Эйнштейна. Морис Шлик, Бертран Рассел, Рудольф Кернэп, Эрнст Кассирер, Альфред Уайтхед, Ганс Рейхенбах и многие другие выдающиеся философы были первыми энтузиастами, которые писали об этой теории и старались выяснить все ее следствия. Книга Рассела «Азбука теории относительности» была впервые опубликована в 1925 г., но до сих пор она остается одним из лучших популярных изложений теории относительности.
Многие ученые оказались неспособными освободиться от старого, ньютоновского образа мыслей.
Они во многом напоминали ученых далеких дней Галилея, которые не могли заставить себя признать, что Аристотель мог ошибаться. Сам Майкельсон, знания математики которого были ограниченными, так и не признал теории относительности, хотя его великий эксперимент проложил путь специальной теории. Позже, в 1935 г., когда я был студентом Чикагского университета, курс астрономии читал нам профессор Вильям Макмиллан, широко известный ученый. Он открыто говорил, что теория относительности - это печальное недоразумение.
«Мы, современное поколение, слишком нетерпеливы, чтобы чего-нибудь дождаться », - писал Макмиллан в 1927 г. «За сорок лет, прошедших после попытки Майкельсона обнаружить ожидавшееся движение Земли относительно эфира, мы отказались от всего, чему нас учили раньше, создали постулат, самый бессмысленный из всех, который мы только смогли придумать, и создали неньютоновскую механику, согласующуюся с этим постулатом. Достигнутый успех - превосходная дань нашей умственной активности и нашему остроумию, но нет уверенности, что нашему здравому смыслу ».
Самые разнообразные возражения выдвигались против теории относительности. Одно из наиболее ранних и наиболее упорных возражений высказывалось относительно парадокса, впервые упомянутого самим Эйнштейном в 1905 г. в его статье о специальной теории относительности (слово «парадокс» употребляется для обозначения чего-то противоположного общепринятому, но логически непротиворечивого).
Этому парадоксу уделяется много внимания в современной научной литературе, поскольку развитие космических полетов наряду с конструированием фантастически точных приборов для измерения времени может вскоре дать способ проверки этого парадокса прямым способом.
Этот парадокс обычно излагается как мысленный опыт с участием близнецов. Они сверяют свои часы. Один из близнецов на космическом корабле совершает длительное путешествие в космосе. Когда он возвращается, близнецы сравнивают показания часов. Согласно специальной теории относительности часы путешественника покажут несколько меньшее время. Другими словами, время в космическом корабле движется медленнее, чем на Земле.
До тех пор, пока космический маршрут ограничен солнечной системой и совершается с относительно малой скоростью, эта разница времен будет пренебрежимо малой. Но на больших расстояниях и при скоростях, близких к скорости света, «сокращение времени» (так иногда называют это явление) будет возрастать. Нет ничего невероятного в том, что со временем будет открыт способ, с помощью которого космический корабль, медленно ускоряясь, сможет достичь скорости, лишь немного меньшей скорости света. Это даст возможность посещать другие звезды в нашей Галактике, а возможно, даже и другие галактики. Итак, парадокс близнецов - больше чем просто головоломка для гостиной, когда-нибудь он станет повседневностью космических путешественников.
Допустим, что космонавт - один из близнецов - проходит расстояние в тысячу световых лет и возвращается: это расстояние мало по сравнению с размерами нашей Галактики. Есть ли уверенность, что космонавт не умрет задолго до конца пути? Не потребуется ли для его путешествия, как во многих научно-фантастических произведениях, целой колонии мужчин и женщин, поколениями живущих и умирающих, пока корабль совершает свое длинное межзвездное путешествие?
Ответ зависит от скорости движения корабля.
Если путешествие будет происходить со скоростью, близкой к скорости света, время внутри корабля будет течь много медленней. По земному времени путешествие будет продолжаться, конечно, более 2000 лет. С точки зрения космонавта, в корабле, если он движется достаточно быстро, путешествие может продлиться лишь несколько десятилетий!
Для тех читателей, которые любят численные примеры, приведем результат недавних расчетов Эдвина Макмиллана, физика из Калифорнийского университета в Беркли. Некий космонавт отправился с Земли к спиральной туманности Андромеды.
До нее немного меньше двух миллионов световых лет. Космонавт первую половину дороги проходит с постоянным ускорением 2g, затем с постоянным замедлением в 2g вплоть до достижения туманности. (Это удобный способ создания постоянного поля тяготения внутри корабля на все время длинного путешествия без помощи вращения.) Обратный путь совершается тем же способом. Согласно собственным часам космонавта продолжительность путешествия составит 29 лет. По земным часам пройдет почти 3 миллиона лет!
Вы сразу заметили, что возникают самые разнообразные привлекательные возможности. Сорокалетний ученый и его юная лаборантка влюбились друг в друга. Они чувствуют, что разница в возрасте делает их свадьбу невозможной. Поэтому он отправляется в длинное космическое путешествие, передвигаясь со скоростью, близкой к скорости света. Он возвращается в возрасте 41 года. Тем временем его подруга на Земле стала тридцатитрехлетней женщиной. Вероятно, она не смогла ждать возвращения любимого 15 лет и вышла замуж за кого-то другого. Ученый не может вынести этого и отправляется в другое продолжительное путешествие, тем более что ему интересно выяснить отношение последующих поколений к одной, созданной им теории, подтвердят они ее или опровергнут. Он возвращается на Землю в возрасте 42 лет. Подруга его прошлых лет давно умерла, и, что еще хуже, от его столь дорогой ему теории ничего не осталось. Оскорбленный, он отправляется в еще более длинный путь, чтобы, возвратившись в возрасте 45 лет, увидеть мир, проживший уже несколько тысячелетий. Возможно, что, подобно путешественнику из романа Уэллса «Машина времени», он обнаружит, что человечество выродилось. И вот тут он «сядет на мель». «Машина времени» Уэллса могла передвигаться в обоих направлениях, а у нашего одинокого ученого не будет способа вернуться обратно в привычный ему отрезок человеческой истории.
Если такие путешествия во времени станут возможными, то возникнут совершенно необычные моральные вопросы. Будет ли что-нибудь незаконного в том, например, что женщина вышла замуж за собственного пра-пра-пра-пра-пра-правнука?
Заметьте, пожалуйста: этот сорт путешествий во времени обходит все логические ловушки (этот бич научной фантастики), как, например, возможность попасть в прошлое и убить собственных родителей до вашего появления на свет или юркнуть в будущее и подстрелить самого себя, послав пулю в лоб.
Рассмотрим, например, положение с мисс Кэт из известного шуточного стишка:
Юная леди по имени Кэт
Двигалась много быстрее, чем свет.
Но попадала всегда не туда:
Быстро помчишься - придешь во вчера.
Перевод А. И. Базя
Возвратись она вчера, она должна была бы встретиться со своим двойником. В противном случае это не было бы действительно вчера. Но вчера не могло быть двух мисс Кэт, поскольку, отправляясь в путешествие во времени, мисс Кэт ничего не помнила о своей встрече со своим двойником, состоявшейся вчера. Итак, перед вами логическое противоречие. Такого типа путешествия во времени невозможны логически, если не предполагать существования мира, идентичного нашему, но движущегося по другому пути во времени (на день раньше). Даже при этом положение дел очень усложняется.
Заметьте также, что эйнштейновская форма путешествий во времени не приписывает путешественнику какого-то подлинного бессмертия или хотя бы долголетия. С точки зрения путешественника, старость подходит к нему всегда с нормальной скоростью. И лишь «собственное время» Земли кажется этому путешественнику несущимся с головокружительной скоростью.
Анри Бергсон, известный французский философ, был наиболее выдающимся из мыслителей, скрестивших шпаги с Эйнштейном из-за парадокса близнецов. Он много писал об этом парадоксе, потешаясь над тем, что казалось ему логически абсурдным. К сожалению, все им написанное доказало лишь то, что можно быть крупным философом без заметных знаний математики. В последние несколько лет протесты появились снова. Герберт Дингль, английский физик, «наиболее громко» отказывается поверить в парадокс. Уже немало лет он пишет остроумные статьи об этом парадоксе и обвиняет специалистов по теории относительности то в тупости, то в изворотливости. Поверхностный анализ, который будет проведен нами, конечно, не разъяснит полностью идущую полемику, участники которой быстро углубляются в сложные уравнения, но поможет уяснить общие причины, приведшие к почти единодушному признанию специалистами того, что парадокс близнецов будет осуществляться именно так, как написал об этом Эйнштейн.
Возражение Дингля, наиболее сильное из когда-либо выдвинутых против парадокса близнецов, заключается в следующем. Согласно общей теории относительности не существует никакого абсолютного движения, нет «избранной» системы отсчета.
Всегда можно выбрать движущийся предмет за неподвижную систему отсчета, не нарушая при этом никаких законов природы. Когда за систему отсчета принята Земля, то космонавт совершает длительное путешествие, возвращается и обнаруживает, что стал моложе брата-домоседа. А что произойдет, если систему отсчета связать с космическим кораблем? Теперь мы должны считать, что Земля проделала длительное путешествие и возвратилась назад.
В этом случае домоседом будет тот из близнецов, который находился в космическом корабле. Когда Земля возвратится, не станет ли брат, находившийся на ней, моложе? Если так произойдет, то в создавшемся положении парадоксальный вызов здравому смыслу уступит место очевидному логическому противоречию. Ясно, что каждый из близнецов не может быть моложе другого.
Дингль хотел бы сделать из этого вывод: или необходимо предположить, что по окончании путешествия возраст близнецов будет в точности одинаков, или принцип относительности должен быть отброшен.
Не выполняя никаких вычислений, нетрудно понять, что кроме этих двух альтернатив существуют и другие. Верно, что всякое движение относительно, но в данном случае имеется одно, очень важное различие между относительным движением космонавта и относительным движением домоседа. Домосед неподвижен относительно Вселенной.
Как эта разница сказывается на парадоксе?
Допустим, что космонавт отправляется проведать планету X где-то в Галактике. Его путешествие проходит при постоянной скорости. Часы домоседа связаны с инерциальной системой отсчета Земли, и их показания совпадают с показаниями всех остальных часов на Земле потому, что все они неподвижны по отношению друг к другу. Часы космонавта связаны с другой инерциальной системой отсчета, с кораблем. Если бы корабль постоянно придерживался одного направления, то не возникло бы никакого парадокса вследствие того, что не было бы никакого способа сравнить показания обоих часов.
Но у планеты X корабль останавливается и поворачивает обратно. При этом инерциальная система отсчета изменяется: вместо системы отсчета, движущейся от Земли, появляется система, движущаяся к Земле. При таком изменении возникают громадные силы инерции, поскольку при повороте корабль испытывает ускорение. И если ускорение при повороте будет очень большим, то космонавт (а не его брат-близнец на Земле) погибнет. Эти силы инерции возникают, конечно, из-за того, что космонавт ускоряется по отношению к Вселенной. Они не возникают на Земле, потому что Земля не испытывает такого ускорения.
С одной точки зрения, можно было бы сказать, что силы инерции, созданные ускорением, «вызывают» замедление часов космонавта; с другой точки зрения, возникновение ускорения просто обнаруживает изменение системы отсчета. Вследствие такого изменения мировая линия космического корабля, его путь на графике в четырехмерном пространстве - времени Минковского изменяется так, что полное «собственное время» путешествия с возвратом оказывается меньше, чем полное собственное время вдоль мировой линии близнеца-домоседа. При изменении системы отсчета участвует ускорение, но в расчет входят только уравнения специальной теории.
Возражение Дингля все еще сохраняется, так как точно те же вычисления можно было бы проделать и при предположении, что неподвижная система отсчета связана с кораблем, а не с Землей. Теперь в путь отправляется Земля, затем она возвращается обратно, меняя инерциальную систему отсчета. Почему бы не проделать те же вычисления и на основе тех же уравнений не показать, что время на Земле отстало? И эти вычисления были бы справедливы, не будь одного необычайной важности факта: при движении Земли вся Вселенная двигалась бы вместе с нею. При повороте Земли поворачивалась бы и Вселенная. Это ускорение Вселенной создало бы мощное гравитационное поле. А как уже было показано, тяготение замедляет часы. Часы на Солнце, например, тикают реже, чем такие же часы на Земле, а на Земле реже, чем на Луне. После выполнения всех расчетов оказывается, что гравитационное поле, созданное ускорением космоса, замедлило бы часы в космическом корабле по сравнению с земными в точности на столько же, на сколько они замедлялись в предыдущем случае. Гравитационное поле, конечно, не повлияло на земные часы. Земля неподвижна относительно космоса, следовательно, на ней и не возникало дополнительного гравитационного поля.
Поучительно рассмотреть случай, при котором возникает точно такая же разница во времени, хотя никаких ускорений нет. Космический корабль А пролетает мимо Земли с постоянной скоростью, направляясь к планете X. В момент прохождения корабля мимо Земли часы на нем устанавливаются на ноль. Корабль А продолжает свое движение к планете X и проходит мимо космического корабля Б, движущегося с постоянной скоростью в противоположном направлении. В момент наибольшего сближения корабль А по радио сообщает кораблю Б время (измеренное по своим часам), прошедшее с момента пролета им мимо Земли. На корабле Б запоминают эти сведения и продолжают с постоянной скоростью двигаться к Земле. Проходя мимо Земли, они сообщают на Землю сведения о времени, затраченном А на путешествие с Земли до планеты X, а также время, затраченное Б (и измеренное по его часам) на путешествие от планеты X до Земли. Сумма этих двух промежутков времени будет меньше, чем время (измеренное по земным часам), протекшее с момента прохождения А мимо Земли до момента прохождения Б.
Эта разница во времени может быть вычислена по уравнениям специальной теории. Никаких ускорений здесь не было. Конечно, в данном случае нет и парадокса близнецов, поскольку нет космонавта, улетевшего и возвратившегося назад. Можно было бы предположить, что путешествующий близнец отправился на корабле А, затем пересел на корабль Б и вернулся обратно; но этого нельзя сделать без перехода от одной инерциальной системы отсчета к другой. Чтобы сделать такую пересадку, он должен был бы подвергнуться действию потрясающе мощных сил инерции. Эти силы вызывались бы тем, что изменилась его система отсчета. При желании мы могли бы сказать, что силы инерции замедлили часы близнеца. Однако если рассматривать весь эпизод с точки зрения путешествующего близнеца, связав его с неподвижной системой отсчета, то в рассуждения войдет сдвигающийся космос, создающий гравитационное поле. (Главный источник путаницы при рассмотрении парадокса близнецов заключается в том, что положение может быть описано с разных точек зрения.) Независимо от принятой точки зрения уравнения теории относительности всегда дают одну и ту же разницу во времени. Эту разницу можно получить, пользуясь одной лишь специальной теорией. И вообще для обсуждения парадокса близнецов мы привлекли общую теорию лишь для того, чтобы опровергнуть возражения Дингля.
Часто бывает невозможно установить, какая из возможностей «правильная». Путешествующий близнец летает туда и обратно или это проделывает домосед вместе с космосом? Есть факт: относительное движение близнецов. Имеется, однако, два различных способа рассказать об этом. С одной точки зрения, изменение инерциальной системы отсчета космонавта, создающее силы инерции, приводит к разнице в возрасте. С другой точки зрения, действие сил тяготения перевешивает эффект, связанный с изменением Землей инерциальной системы. С любой точки зрения домосед и космос неподвижны по отношению друг к другу. Итак, положение полностью различно с разных точек зрения, несмотря на то что относительность движения строго сохраняется. Парадоксальная разница в возрасте объясняется независимо от того, какой из близнецов считается покоящимся. Нет необходимости отбрасывать теорию относительности.
А теперь может быть задан интересный вопрос.
Что, если в космосе нет ничего, кроме двух космических кораблей, А и Б? Пусть корабль А, используя свой ракетный двигатель, ускорится, совершит длинное путешествие и вернется назад. Будут ли предварительно синхронизированные часы на обоих кораблях вести себя по-прежнему?
Ответ будет зависеть от того, чьего взгляда на инерцию вы придерживаетесь - Эддингтона или Денниса Скьяма. С точки зрения Эддингтона - «да». Корабль А ускоряется по отношению к пространственно-временной метрике космоса; корабль Б - нет. Их поведение несимметрично и приведет к обычной разнице в возрасте. С точки зрения Скьяма- «нет». Имеет смысл говорить об ускорении только по отношению к другим материальным телам. В данном случае единственными предметами являются два космических корабля. Положение полностью симметрично. И действительно, в данном случае нельзя говорить об инерциальной системе отсчета потому, что нет инерции (кроме крайне слабой инерции, созданной присутствием двух кораблей). Трудно предсказать, что случилось бы в космосе без инерции, если бы корабль включил свои ракетные двигатели! Как выразился с английской осторожностью Скьяма: «Жизнь была бы совсем другой в такой Вселенной!»
Поскольку замедление часов путешествующего близнеца можно рассматривать как гравитационное явление, любой опыт, который показывает замедление времени под действием тяжести, представляет собой косвенное подтверждение парадокса близнецов. В последние годы было получено несколько таких подтверждений с помощью нового замечательного лабораторного метода, основанного на эффекте Мёссбауэра. Молодой немецкий физик Рудольф Мёссбауэр в 1958 г. открыл способ изготовления «ядерных часов», с непостижимой точностью отмеряющих время. Представьте часы, «тикающие пять раз в секунду, и другие часы, тикающие так, что после миллиона миллионов тиканий они отстанут лишь на одну сотую тиканья. Эффект Мёссбауэра способен сразу же обнаружить, что вторые часы идут медленнее первых!
Опыты с применением эффекта Мёссбауэра показали, что время вблизи фундамента здания (где тяжесть больше) течет несколько медленнее, чем на его крыше. По замечанию Гамова: «Машинистка, работающая на первом этаже здания Эмпайр Стейт Билдинг, старится медленнее, чем ее сестра-близнец, работающая под самой крышей». Конечно, эта разница в возрасте неуловимо мала, но она есть и может быть измерена.
Английские физики, используя эффект Мёссбауэра, обнаружили, что ядерные часы, помещенные на краю быстро вращающегося диска диаметром всего в 15 см несколько замедляют свой ход. Вращающиеся часы можно рассматривать как близнеца, непрерывно изменяющего свою инерциальную систему отсчета (или как близнеца, на которого воздействует гравитационное поле, если считать диск покоящимся, а космос - вращающимся). Этот опыт является прямой проверкой парадокса близнецов. Наиболее прямой опыт будет выполнен тогда, когда ядерные часы поместят на искусственном спутнике, который будет вращаться с большой скоростью вокруг Земли.
Затем спутник возвратят и показания часов сравнят с теми часами, которые оставались на Земле. Конечно, быстро приближается то время, когда космонавт сможет сделать самую точную проверку, захватив ядерные часы с собой в далекое космическое путешествие. Никто из физиков, кроме профессора Дингля, не сомневается, что показания часов космонавта после его возвращения на Землю будут немного не совпадать с показаниями ядерных часов, оставшихся на Земле.
Из книги автора8. Парадокс близнецов Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории
Колонка редактора
Здравствуйте, уважаемые читатели!
Многие мужчины умеют готовить лишь одно блюдо – яичницу, и я не исключение. Меньшее количество могут еще пожарить картошку, но это уже сложнее. И уж совсем небольшое количество истинных героев способны воплотить в съедобном виде такие сложнейшие кулинарные конструкции, как мясо или суп.
До недавнего времени мои способности ограничивались только первыми двумя блюдами. Но теперь, благодаря моей подруге, я могу готовить еще одно блюдо. Его прелесть в том, что оно по сложности занимает промежуточное положение между яичницей и жаренной картошкой, и называется онокурица по-оксански (догадайтесь, почему;-).
Для этого блюда нужно:
- курица в форме разделанных и приправленных кусков (например, бёдрышек или ножек), такие продаются, они уже посыпаны всякой фигнёй и даже иногда посолены
- одна луковица
- микроволновка
- посуда для микроволновки
Вот. Луковицу надо очистить, порезать кружками и побросать на дно посудины. Потом туда покидать куски курицы. Потом накрыть крышкой. Потом поставить всё это в микроволновку и закрыть дверцу. Поставить регулятор на максимум, а часы – на 30 минут, и всё!
В течение 30 минут можно делать всё, что заблагорассудится, а потом можно вкусно поесть и даже не один раз!
И еще вопрос к читателям: кто может сделать на php/MySQL или знает, где взять бесплатно, какой-нибудь хороший тест интеллекта для нашего сайта? Лучше, тест Айзенка!
Введение
Ну а сегодня мы рассмотрим, пожалуй, самый известный из парадоксов относительности, который называетсяпарадокс близнецов.
Сразу говорю, что никакого парадокса на самом деле нет, а проистекает он от неправильного понимания происходящего. И если всё правильно понять, а это, уверяю, совсем не сложно, то никакого парадокса не будет.
Начнём мы с логической части, где посмотрим, как парадокс получается и какие логические ошибки к нему приводят. А потом перейдем к предметной части, в которой посмотрим механику того, что происходит при парадоксе.
Сперва напомню вам наше базовое рассуждение о замедлении времени.
Помните анекдот про Жору Батарейкина, когда за Жорой послали следить полковника, а за полковником – подполковника? Нам понадобится воображение, чтбы представить себя на месте подполковника, то есть, понаблюдать за наблюдателем.
Итак, постулат относительности гласит, что скорость света одинакова с точки зрения всех наблюдателей (во всех системах отсчёта, выражаясь наукообразно). Так вот, даже если наблюдатель полетит вдогонку свету со скоростью 2/3 скорости света, он всё равно увидит, что свет убегает от него с прежней скоростью.
Давайте посмотрим на эту ситуацию со стороны. Свет летит вперед со скоростью 300000 км/с, а вдогонку ему летит наблюдатель, со скоростью 200000 км/с. Мы-то видим, что расстояние между наблюдателем и светом уменьшается со скоростью 100000 км/с, но сам наблюдатель этого не видит, а видит те же самые 300000 км/с. Как это может быть так? Единственной (почти! 😉 причиной такому явлению может быть то, что наблюдатель замедлен. Он медленно двигается, медленно дышит и медленно измеряет скорость по медленным часам. В результате удаление со скоростью 100000 км/с он воспринимает, как удаление со скоростью 300000 км/с.
Помните другой анекдот, про двух наркоманов, которые увидели, как по небу несколько раз пронесся огненный шар, а потом оказалось, что они простояли на балконе три дня, а огненный шар – это было солнце? Так вот этот наблюдатель как раз и должен находиться в состоянии такого замедленного наркомана. Разумеется, это будет видно только нам, а сам он ничего особенного не заметит, ведь замедлятся все процессы вокруг него.
Описание эксперимента
Чтобы драматизировать данный вывод, неведомый автор из прошлого, возможно, сам Эйнштейн, придумал следующий мысленный эксперимент. На земле живут два брата-близнеца – Костя и Яша.
Костя | Яша |
Если бы братья жили вместе на земле, то они синхронно прошли бы следующие стадии взросления и старения (прошу прощения за некоторую условность):
10 | 20 | 30 | 40 | 50 | 60 | 70 |
подросток |
трудный возраст |
молодой повеса |
молодой работник |
заслуженный работник |
пенсионер |
дряхлый старик |
Но всё происходит не так.
Еще подростком Костя, назовём его космическим братом, садится в ракету и отправляется к звезде, расположенной в нескольких десятках световых лет от Земли.
Полёт совершается с околосветовой скоростью и поэтому путь туда и обратно занимает шестьдесят лет.
Костя, которого назовём земным братом, никуда не летит, а терпеливо ждет своего родственника дома.
Предсказание относительности
Когда космический брат возвращается, то земной оказывается постаревшим на шестьдесят лет.
Однако, поскольку космический брат находился всё время в движении, его время шло медленнее, поэтому, по возвращении, он окажется постаревшим всего на 30 лет. Один близнец окажется старше другого!
Костя | Яша |
Многим кажется, что данное предсказание ошибочно и эти люди называют парадоксом близнецов само это предсказание. Но это не так. Предсказание совершенно истинно и мир устроен именно так!
Давайте еще раз посмотрим логику предсказания. Допустим, земной брат неотрывно наблюдает за космическим.
Кстати, я уже неоднократно говорил о том, что многие допускают здесь ошибку, неправильно интерпретируя понятиенаблюдает. Они думают, что наблюдение обязательно должно происходить при помощи света, например, в телескоп. Тогда, думают они, поскольку свет распространяется с конечной скоростью, всё, что наблюдается, будет видеться таким, каким оно было раньше, в момент испускания света. Из-за этого, думают эти люди, и возникает замедление времени, которое, таким образом, является кажущимся явлением.
Другим вариантом этого же заблуждения является списание всех явлений на эффект Доплера: поскольку космический брат удаляется от земного, то каждый новыйкадр изображения приходит на Землю всё позже, а сами кадры, таким образом, следуют реже, чем надо, и влекут за собой замедление времени.
Оба объяснения неверны. Теория относительности не настолько глупа, чтобы не учитывать эти эффекты. Посмотрите сами на . Мы там написаливсё равно увидит, что, но мы не имели в виду именноувидит глазами. Мы имели в видуполучит в результате, с учётом всех известных явлений. Обратите внимание, что вся логика рассуждений нигде не основывается на том, что наблюдение происходит при помощи света. И если Вы всё время представляли себе именно это, то перечитайте всё заново, представляя, как надо!
Для неотрывного наблюдения надо, чтобы космический брат, допустим, каждый месяц отсылал на Землю факсы (по радио, со скоростью света) со своим изображением, а земной брат развешивал бы их на календаре с учётом задержки передачи. Получалось бы, что сначала земно брат вешает свою фотографию, а фотографию брата того же времени вешает позже, когда она до него долетает.
По теории он будет всё время видеть, что время у космического брата течёт медленнее. Оно будет течь медленнее в начале пути, в первой четверти пути, в последней четверти пути, в конце пути. И из-за этого будет постоянно накапливаться отставание. Только во время разворота космического брата, в тот миг, когда он остановится, чтобы полететь назад, его время будет идти с той же скоростью, что и на Земле. Но это не изменит итогового результата, так как суммарное отставание всё равно будет. Следовательно, в момент возвращения космического брата отставание сохранится и значит, оно уже останется навсегда.
Космический брат | |||
10 | 20 | 30 | 40 |
Земной брат | |||
10 | 30 | 50 | 70 |
Как видите, логических ошибок тут нет. Однако, вывод выглядит очень удивительным. Но тут ничего не поделаешь: мы живем в удивительном мире. Данный вывод многократно подтверждался, как для элементарных частиц, которые проживали больше времени, если находились в движении, так и для самых обыкновенных, только очень точных (атомных) часов, которые отправлялись в космический полёт и потом обнаруживалось, что они отстают от лабораторных на доли секунды.
Подтвердился не только сам факт отставания, но и его численное значение, которое можно рассчитать по формулам из одного из .
Кажущееся противоречие
Итак, отставание будет. Космический брат будет моложе земного, можете не сомневаться.
Но возникает другой вопрос. Ведь движение относительно! Следовательно, можно считать, что космический брат никуда не летал, а оставался всё время неподвижным. Зато вместо него в путешествие летал земной брат, вместе с самой планетой Земля и всем остальным. А раз так, то значит больше постареть должен космический брат, а земной – остаться более молодым.
Получается противоречие: оба рассмотрения, которые должны быть равнозначными по теории относительности, приводят к противоположным выводам.
Вот это противоречие и называется парадоксом близнецов.
Инерциальные и неинерциальные системы отсчёта
Как же нам разрешить это противоречие? Как известно, противоречий быть не может 🙂
Поэтому мы должны придумать, что же мы такого не учли, из-за чего возникло противоречие?
Сам вывод того, что время должно замедляться – безупречен, ибо он слишком прост. Следовательно, ошибка в рассуждениях должна присутствовать позже, там, где мы предположили, что братья равноправны. Значит, на самом деле братья неравноправны!
Я уже говорил в самом первом выпуске, что не всякая относительность, которая кажется, существует на самом деле. Например, может показаться, что если космический брат разгоняется прочь от Земли, то это равносильно тому, что он остаётся на месте, а разгоняется сама Земля, прочь от него. Но это не так. Природа не соглашается с этим. По каким-то причинам природа создаёт для того, кто разгоняется перегрузки : его прижимает к креслу. А для того, кто не разгоняется – перегрузок не создаёт.
Почему природа так поступает – в данный момент не важно. В данный момент важно научиться представлять себе природу как можно правильней.
Итак, братья могут быть неравноправны при условии, что один из них разгоняется или тормозит. Но у нас ведь именно такая ситуация: улететь с Земли и вернуться на неё можнотолько разогнавшись, развернувшись и затормозив. Во всех этих случаях космический брат испытывал перегрузки.
Каков вывод? Логический вывод прост: мы не имеем права заявлять, что братья равноправны. Следовательно, рассуждения о замедлении времени верны лишь с точки зрения одного из них. Какого? Разумеется, земного. Почему? Потому, что мы не задумывались о перегрузках и представляли все так, словно их не было. Мы, например, не можем утверждать, что в условиях перегрузок скорость света остаётся постоянной. Следовательно, мы не можем утверждать, что в условиях перегрузок происходит замедление времени. Всё, что мы утверждали – мы утверждали для случая отсутствия перегрузок.
Когда учёные дошли до этого момента, они поняли, что им требуется специальное название для описаниянормального мира, мира без перегрузок. Такое описание было названо описанием с точки зрения инерциальной системы отсчёта (сокращенно – ИСО). Новое же описание, которое еще не было создано, было названо, естественно, описанием с точки зрения неинерциальной системы отсчёта.
Что же такое инерциальная система отсчёта (ИСО)
Ясно, что первое , что мы можем сказать об ИСО – это такое описание мира, которое нам кажетсянормальным. То есть, это то описание, с которого мы начали.
В инерциальных системах отсчёта действует так называемый закон инерции – каждое тело, будучи предоставлено самому себе, либо остаётся в покое, либо движется равномерно и прямолинейно. Из-за этого системы и были так называны.
Если сесть в космический корабль, автомобиль или поезд, которые движутся абсолютно равномерно и прямолинейно с точки зрения ИСО, то внутри такого транспортного средства мы не сможем заметить движения. А это значит, что такая система наблюдения – тоже будет ИСО.
Следовательно, второе, что мы можем сказать об ИСО, что всякая система, движущаяся равномерно и прямолинейно относительно ИСО – также будет ИСО.
Что же мы можем сказать об не-ИСО? О них мы можем сказать пока лишь то, что система, движущаяся относительно ИСО с ускорением – будет не-ИСО.
Часть последняя: история Кости
Теперь попробуем выяснить, как же будет выглядеть мир с точки зрения космического брата? Пусть он также получает факсы от земного брата и развешивает их на календаре с учётом времени полета факса с Земли до корабля. Что он получит?
Чтобы до этого догадаться, нужно обратить внимание на следующий момент: во время путешествия космического брата есть участки, на которых он движется равномерно и прямолинейно. Допустим, при старте брат ускоряется с огромной силой так, что достигает крейсерской скорости за 1 день. После этого он летит много лет равномерно. Затем, в середине пути, он также стремительно за один день разворачивается и летит обратно опять равномерно. В конце пути он очень резко, за один день, тормозит.
Разумеется, если посчитать, какие нам нужны скорости и с каким ускорением надо разгоняться и разворачиваться, мы получим, что космического брата должно попросту размазать по стенкам. Да и сами стенки космического корабля, если они сделаны из современных материалов – не смогут выдержать таких перегрузок. Но нам сейчас важно не это. Допустим, у Кости имеются супер-пупер противоперегрузочные кресла, а корабль сделан из инопланетянской стали.
Что же получится?
В самый первый миг полета, как нам известно, возрасты братьев равны. В течение первой половины полёта он происходит инерциально, а значит, к нему применимо правило замедления времени. То есть, космический брат будет видеть, что земной стареет в два раза медленнее. Следовательно, через 10 лет полета Костя постареет на 10 лет, а Яша – только на 5.
К сожалению, я не нарисовал 15-летнего близнеца, поэтому я буду использовать 10-летнюю картинку с припиской+5 .
Аналогичный результат получается из анализа конца пути. В самый последний миг возрасты братьев равны 40 (Яша) и 70 (Костя), мы это знаем точно. Кроме того, мы знаем, что вторая половина полёта также протекала инерциально, а значит, облик мира с точки зрения Кости соответствует нашим выводам о замедлении времени. Следовательно, за 10 лет до окончания полёта, когда космическому брату будет 30 лет, он заключит, что земному уже 65, ибо до окончания полёта, когда соотношение будет 40/70, он будет стареть в два раза медленнее.
Где-то между этими участками, в самой середине полёта, должно происходить что-то, чтосшивает процесс старения земного брата воедино.
Мы собственно, не будем дальше темнить и гадать, что же там такое происходит. Мы просто прямо и честно сделаем вывод, который следует с неизбежностью. Если за миг до разворота земному брату было 17,5 лет, а после разворота стало 52,5, то это означает ни что иное, как тот факт, что за время разворота космического брата у земного прошло 35 лет!
Выводы
Итак мы увидели, что существует так называемый парадокс близнецов, который заключается в кажущемся противоречии в том, у кого именно из двух близнецов замедляется время. Сам факт замедления времени – парадоксом не является.
Мы увидели, что существуют инерциальные и неинерциальные системы отсчёта, причём законы природы, полученные нами ранее, относились лишь к инерциальным системам. Именно в инерциальных системах наблюдается замедление времени на движущихся космических кораблях.
Мы получили, что в неинерциальных системах отсчёта, например, с точки зрения разворачивающихся космических кораблей, время ведёт себя еще более странно – оно проматывается вперёд.
Взгляд на парадокс близнецов из четырехмерного пространства-времени можно увидеть в .
Димс.