Многоатомные частицы, несущие электрический заряд. Заряд иона кратен элементарному электрическому заряду и всегда целочисленный. Заряд одноатомного иона химического элемента по числу и знаку совпадает со степенью окисления этого элемента; заряд многоатомного иона равен алгебраической сумме степеней окисления элементов с учётом числа их атомов. Положительно заряженные ионы (например, К + , Са 2+ , ΝΗ + 4) называют катионами (от греческого κατιών - идущий вниз), отрицательно заряженные ионы (например, Сl - , SO 4 2- , СН 3 СОО -) - анионами (от греческого ανιών - идущий вверх). Процесс образования ионов называется ионизацией. Термины «ион», «катион» и «анион» ввёл в 1834 году М. Фарадей, изучавший действие электрического поля на водные растворы различных химических соединений. В постоянном электрическом поле катионы перемещаются к отрицательно заряженному электроду (катоду), анионы - к положительно заряженному электроду (аноду).
В виде самостоятельных частиц ионы могут существовать во всех агрегатных состояниях вещества: в газах (смотри Ионы в газах, Ионы в атмосфере), в кристаллах (смотри Ионные кристаллы), в плазме, в жидкостях - в расплавах (смотри Ионные жидкости) и в растворах (смотри Электролитическая диссоциация). Ионы являются структурными единицами химических соединений с ионной химической связью. Такие соединения в твёрдом состоянии, расплавах и растворах состоят из катионов и анионов; например, хлорид натрия NaCl - из катионов Na + и анионов Cl - , ацетат калия СН 3 СООК - из катионов К + и анионов СН3СОО - . Некоторые соединения с полярной ковалентной связью (например, хлороводород НСl) при растворении в воде и других полярных растворителях диссоциируют на ионы. В зависимости от природы растворителя и растворённого вещества, содержащиеся в растворах ионы, могут либо взаимодействовать с молекулами растворителя, в результате чего вокруг ионов формируются сольватные оболочки, либо находиться достаточно близко, образуя ионные пары.
Ионы образуются при отрыве электронов от атомов и молекул, находящихся в газовой фазе (при этом расходуется энергия ионизации), или в результате присоединения электронов к таким атомам и молекулам (энергия, затрачиваемая или высвобождающаяся при этом, - сродство атома или молекулы к электрону). К образованию ионов приводит также присоединение иона простого состава к нейтральной молекуле или другому иону. Например, при присоединении иона Н + к молекуле воды Н 2 О получается ион гидроксония Н 3 О + . Возможно образование ионов при разрушении молекул в результате термического или радиационного воздействия. При образовании иона всегда сохраняется суммарный первоначальный заряд участвующих в этом процессе частиц (если ионы образовались из нейтральных атомов или молекул, то суммарный заряд всех ионов равен нулю). Некоторые молекулы, находящиеся в растворах или кристаллах, оставаясь в целом электронейтральными, содержат в различных участках противоположно заряженные группы (смотри Цвиттер-ионы). Комплекс, состоящий из нескольких нейтральных атомов или молекул и ионов, - кластерный ион.
Химические реакции в растворе (или расплаве) с участием ионных соединений обусловлены перемещением ионов в этой среде и образованием ими новых нейтральных частиц или более сложных ионов. В живых организмах ионы участвуют в различных обменных процессах, регуляции мышечных сокращений, передаче нервных импульсов и т.д. (смотри, например, в статье Ионные насосы).
Лит.: Крестов Г. А. Термодинамика ионных процессов в растворах. Л., 1984.
Ион - одноатомная или многоатомная электрически заряженная частица вещества, образующаяся в результате потери или присоединения атомом в составе молекулы одного или нескольких электронов.
Заряд иона кратен заряду электрона. Понятие и термин «ион» ввел в 1834 году Майкл Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами
, а отрицательно заряженные, движущиеся к положительному полюсу (аноду) - анионами
.
Свойства ионов определяются:
1) знаком и величиной их заряда;
2) строением ионов, т. е. расположением электронов и прочностью их связей, причем особенно важны внешние электроны;
3) их размерами, определяемыми радиусом орбиты внешнего электрона.
4) прочностью электронной оболочки (деформируемостью ионов).
В виде самостоятельных частиц ионы встречаются во всех агрегатных состояниях вещества: в газах (в частности, в атмосфере), в жидкостях (в расплавах и растворах), в кристаллах и в плазме (в частности, в межзвездном пространстве).
Являясь химически активными частицами, ионы вступают в реакции с атомами, молекулами и между собой. В растворах ионы образуются в результате электролитической диссоциации и обусловливают свойства электролитов.
Число элементарных электрических зарядов у ионов в растворах почти всегда совпадает с валентностью данного атома или группы; газовые ионы могут иметь и другое число элементарных зарядов. Под влиянием достаточно энергичных воздействий (высокая температура, излучение высокой частоты, электроны большой скорости) могут образоваться положительные ионы с различным числом электронов, вплоть до голых ядер. Положительные ионы обозначаются знаком + (плюс) или точкой (например, Mg***,Аl +++), отрицательные знаком — (минус) или знаком" (Сl - , Br").Число знаков обозначает число избыточных элементарных зарядов. Чаще всего образуются ионы с устойчивыми внешними электронными оболочками, соответствующими оболочке благородных газов. Ионы, из которых построены кристаллы, и ионы, встречающиеся в растворах и растворителях с высокими диэлектрическими постоянными, принадлежат большей частью к этому типу, например щелочные и щелочноземельные металлы, галоиды и т. д. Впрочем встречаются и т. н. переходные ионы, у которых внешние оболочки содержат от 9 до 17 электронов; эти ионы могут переходить сравнительно легко в ионы другого типа и значности (например Fe - - , Си" и т.д.).
Химические и физические свойства
Химические и физические свойства ионов резко отличаются от свойств нейтральных атомов, напоминая во многих отношениях свойства атомов других элементов, имеющих тоже число электронов и ту же внешнюю электронную оболочку (напр. К" напоминает Ar, F"—Ne). Простые ионы, как показывает волновая механика, имеют сферическую форму. Размеры ионы характеризуются величиной их радиусов, которые могут быть определены эмпирически по данным рентгеновского анализа кристаллов (Гольдшмидт) или вычислены теоретически методами волновой механики (Паулииг) или статистики (Ферми). Результаты, полученные обоими методами, дают вполне удовлетворительное совпадение. Целый ряд свойств кристаллов и растворов определяется радиусами ионов, из которых они состоят; у кристаллов этими свойствами являются энергия кристаллической решетки и в значительной степени ее тип; в растворах ионов поляризуют и притягивают молекулы растворителя, образуя оболочки переменного состава, эта поляризация и прочность связи между ионов и молекулами растворителя определяются почти исключительно радиусами и зарядами ионов. Насколько вообще сильно действие поля ионов на молекулы растворителя, показывают вычисления Цвикки, который нашел, что молекулы воды находятся вблизи ионов под давлением порядка 50.000 атм. Прочность(деформируемость) внешней электронной оболочки зависит от степени связанности внешних электронов и обусловливает главным образом оптические свойства ионов (цветность, рефракция). Впрочем цветность ионов связана также и с образованием ионов различных соединений с молекулами растворителя. Теоретические вычисления эффектов, связанных с деформацией электронных оболочек, более затруднительны и менее наделены, чем вычисления сил взаимодействия между ионами. Причины образования ионов в растворах точно неизвестны; наиболее правдоподобно мнение, что молекулы растворимых веществ разрываются на ионы молекулярным нолем растворителя; гетерополярные, т. е. построенные из ионов кристаллы дают повидимому при растворении сразу ионы. Значение молекулярного поля растворителя подтверждается как будто параллелизмом между величиной диэлектрической постоянной растворителя, являющейся приблизительным мерилом напряжения его молекулярного поля, и степенью диссоциации (правило Нернста-Томсона, экспериментально подтвержденное Вальденом). Однако ионизация происходит и в веществах с малыми диэлектрическими постоянными, но здесь растворяются преимущественно электролиты, дающие комплексные ионны. Комплексы образуются иногда из ионов растворяющегося вещества, иногда растворитель также принимает участие в их образовании. Для веществ с малыми диэлектрическими постоянными характерно также образование комплексных ионов при прибавлении не электролитов, например (С 2 Н 5)0Вг 3 дает при смешении с хлороформом проводящую
систему. Внешним признаком образования комплексных ионов служит т. н. аномальная электропроводность, при которой график, изображающий зависимость молярной электропроводности от разведения, дает максимум в области концентрированных растворов и минимум—при дальнейшем разведении.
Номенклатура Согласно химической номенклатуре, название катиона, состоящего из одного атома совпадает с названием элемента, например, Na + называется натрий-ионом, иногда добавляют в скобках заряд, например, название катиона Fe 2+ - железо(II)-ион. Название состоит из одного атома аниона образуется из корня латинского названия элемента и суффикса «-ид/-ид », например, F - называется фторид-ионом.
Ио́ны (от греч. ion - идущий), электрически заряженные частицы, образующиеся в результате потери или присоединения одного или нескольких электронов (или других заряженных частиц) к атому, молекуле, радикалу или другому иону. Положительно заряженные ионы называются катионами , отрицательно заряженные ионы - анионами . Термин предложен М. Фарадеем в 1834 г.
Ионы обозначают химическим символом с индексом, расположенным вверху справа. Индекс указывает знак и величину заряда, т. е. кратность иона, в единицах заряда электрона. При потере или приобретении атомом 1, 2, 3... электронов образуются, соответственно, одно-, двух- и трЕхзарядные ионы (см. Ионизация), например Na + , Ca 2+ , Al 3+ , Cl - , SO 4 2- .
Атомные ионы обозначают также химическим символом элемента с римскими цифрами, указывающими кратность иона, в этом случае римские цифры являются спектроскопическими символами и их значение больше величины заряда на единицу, т. е. NI означает нейтральный атом N, обозначение иона NII означает однократно заряженный ион N + , NIII означает N 2+ .
Последовательность ионов различных химических элементов, содержащих одинаковое число электронов, образует изоэлектронный ряд.
Ионы могут входить в состав молекул веществ, образуя молекулы благодаря ионной связи . В виде самостоятельных частиц, в несвязанном состоянии, ионы встречаются во всех агрегатных состояниях вещества - в газах (в частности, в атмосфере), в жидкостях (в расплавах и в растворах), в кристаллах. В жидкостях, в зависимости от природы растворителя и растворенного вещества, ионы могут существовать бесконечно долго, например, ион Na + в водном растворе поваренной соли NaCl. Соли в твердом состоянии обычно образуют ионные кристаллы . Кристаллическая решетка металлов состоит из положительно заряженных ионов, внутри которой находится «электронный газ». Энергия взаимодействия атомных ионов может быть вычислена с помощью различных приближенных методов, учитывающих межатомное взаимодействие .
Образование ионов происходит в процессе ионизации. Для удаления электрона из нейтрального атома или молекулы необходимо затратить определенную энергию, которая называется энергией ионизации. Энергия ионизации, отнесенная к заряду электрона, называется ионизационным потенциалом. Сродство к электрону - характеристика, противоположная энергии ионизации, и показывает величину энергии связи дополнительного электрона в отрицательном ионе.
Нейтральные атомы и молекулы ионизируются под действием квантов оптического излучения, рентгеновского и g-излучения, электрического поля при столкновении с другими атомами, частицами и т. д.
В газах ионы образуются в основном под действием ударов частиц большой энергии или при фотоионизации под действием ультрафиолетовых, рентгеновских и g-лучей (см. Ионизирующие излучения). Образовавшиеся таким путем ионы в обычных условиях недолговечны. При высокой температуре ионизация атомов и ионов (термическая ионизация, т. е. термическая диссоциация с отделением электрона) может происходить также как равновесный процесс , в котором степень ионизации возрастает с повышением температуры и с понижением давления. Газ переходит при этом в состояние плазмы .
Ионы в газах играют большую роль во многих явлениях. В природных условиях ионы образуются в воздухе под действием космических лучей, солнечного излучения или электрического разряда (молнии). Присутствие ионов, их вид и концентрация влияют на многие физические свойства воздуха, на его физиологическую активность.
ИОН
(от греч. ion - идущий), электрически заряж. ч-ца, образующаяся при потере или присоединении эл-нов атомами, молекулами, радикалами и т. д. И. соответственно могут быть положительными (при потере эл-нов) и отрицательными (при присоединении эл-нов), И. кратен заряду эл-на. И. могут входить в состав молекул и существовать в несвязанном состоянии (в газах, жидкостях, плазме).
Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .
ИОН (от греч. ion - идущий) - электрически заряженная частица, образующаяся при отрыве или присоединении одного или неск. электронов (или др. заряж. частиц) к атому, молекуле, радикалу и др. иону. Положительно заряженные И. наз. катионами, отрицательно заряженные - анионам и. И. обозначают хим. символом с индексом (вверху справа), указывающим знак и величину заряда - кратность И.- в единицах заряда электрона (напр., Li + , H 2 + , SO 4 2-). Атомные И. обозначают также хим. символом элемента с римскими цифрами, указывающими кратность И. (напр., NI, NII, NIII, что соответствует N, N + , N 2+ ; в этом случае римские цифры являются спектроскопич. символами Z, они больше заряда иона Z i на единицу: Z=Z i +l). Последовательность И. различных хим. элементов, содержащих одинаковое число электронов, образует (см. напр., Водородоподобные атомы). Понятие и термин "И." (а также " " и "анион") введены в 1834 М. Фарадеем (М. Faraday). Для удаления электрона из нейтрального атома или необходимо затратить определ. энергию, к-рая наз. энергией ионизации. Энергия ионизации, отнесённая к заряду электрона, называется ионизационным потенциалом. Характеристика, противоположная энергии ионизации - - равна энергии связи дополнит, электрона в отрицат. И. Нейтральные атомы и ионизируются под действием квантов оптич. излучения, рентг. и g-излучения, электрич. поля при столкновениях с др. атомами, электронами и др. частицами и т. п. молекула ДНК, несущая в каждой своей повторяющейся единице отрицательно заряженную фосфатную группу РО 4 -). Нек-рые молекулы, находящиеся в растворах и кристаллах, остаются в целом электронейтральными, хотя и содержат в разл. её участках противоположно заряженные группы, их наз. цвиттерионами. Так, молекула аминокислоты H 2 N - СНР-СООН (Р - боковой радикал) переходит в цвиттерионную форму H 3 N-СНР-СОО - , что сопровождается переносом протона с группы СООН на группу H 2 N. Комплекс, состоящий из неск. нейтральных атомов или молекул и простого И. образует сложный И., наз. кластерным ионом. В газах при обычных условиях образующиеся И. недолговечны, однако при высоких темп-pax и давлениях степень ионизации газа растёт с ростом темп-ры и давления и при очень высоких темп-pax и давлениях газпереходит в плазму. В жидкостях, в зависимости от природы растворителя и растворённого вещества, катионы и анионы могут располагаться на практически бесконечном расстоянии друг от друга (в том случае, когда они окружены молекулами растворителя), но могут оказаться и достаточно близко друг от друга и, сильно взаимодействуя, образовывать т. н. ионные пары. Соли в твёрдом состоянии обычно образуют ионные кристаллы. Энергия взаимодействия атомных И. как ф-ции расстояния между ними может быть вычислена с помощью разл. приближенных методов (см. Межмолекулярное взаимодействие). Уровни энергии атомных и молекулярных И. и нейтральных частиц различны и в принципе могут быть рассчитаны методами квантовой механики, как и энергии ионизации. Оптич. спектры атомных И. аналогичны спектрам нейтральных атомов с тем же числом электронов, они только смещаются в коротковолновый диапазон, т. к. длины воли спектральных линий, соответствующих квантовым переходам между уровнями энергии с различными значениями гл. квантового числа, пропорциональны квадрату заряда ядра. В спектрах И. появляются т. наз. сателлитные линии, анализ к-рых позволяет исследовать структуру и свойства многозарядных ионов. Ионная компонента оказывает существенное влияние на параметры лабораторной и астрофизической плазмы. Изучение И. важно для различных областей физики и химии плазмы, астрофизики, квантовой электроники, для исследования строения веществ п т. д. И. широко используются в эксперим. исследованиях и приборах (масс-спектрометры, Вильсона камеры, ионный проектор , ионные пучки и т. д.). Лит.: Смирнов Б. М., Отрицательные ионы, М., 1978; Пресняков Л. П., Шевелько В. П., Янев Р. К., Элементарные с участием многозарядных ионов, М., 1986. В. Г. Дашевский.
Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .
Синонимы :
Смотреть что такое "ИОН" в других словарях:
У этого термина существуют и другие значения, см. Ион (значения). «ИОН» Тип Частная компания … Википедия
ион - Атом или группа атомов, который за счет потери или приобретения одного или более электронов приобрел электрический заряд. Если ион получен из атома водорода или атома металла, он обычно положительно заряжен; если ион получен из атома неметалла… … Справочник технического переводчика
А, муж. Разг. к (см. Иона).Отч.: Ионович, Ионовна; разг. Ионыч. Словарь личных имён. Ион См. Ивон. День Ангела. Справочник по именам и именинам. 2010 … Словарь личных имен
- (Ion, Ιων). Сын Ксуфа, родоначальник ионийского племени. (Источник: «Краткий словарь мифологии и древностей». М.Корш. Санкт Петербург, издание А. С. Суворина, 1894.) ИОН (Ίων), в греческой мифологии афинский царь, сын Креусы. Отцом И. большинство … Энциклопедия мифологии
ИОН, йон муж. лад, толк, смысл, пригодность. Он несуразый, иону в нем нет. Окно не к иону было прорублено, я его и заделал. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля
Сущ., кол во синонимов: 17 адденд (1) амфион (2) анион (1) … Словарь синонимов
Атом (или гр. атомов комплексный ион), несущий положительный (катион) или отрицательный (анион) электрический заряд и являющийся самостоятельной или относительно самостоятельной составной частью (строительной единицей) к лов или… … Геологическая энциклопедия
Ион, Ion, с Хиоса, ок. 490 ок. 421 гг. до н. э., греческий поэт. Часто бывал в Афинах, хотя и не поселился там навсегда. Состоял в дружеских отношениях с Тимоном и Фемистоклом, знал также Эсхила и Софокла. Первую трагедию поставил в 451 г. Нам… … Античные писатели
В греческой мифологии внук Эллина, сын Ксуфа (или Аполлона); родоначальник племени ионийцев. Стал афинским царем; его сыновья Гоплет, Гелеонт, Эгикорей, Аргад эпонимы четырех древнейших фил Аттики … Большой Энциклопедический словарь
- (Аин) (возм., руины), город и равнина, находящиеся сев. истока Иордана (3Цар 15:20; 4Цар 15:29). И. был завоеван арам. (сир.) царем Венададом, а позднее Тиглатпаласаром III (библ. Феглаффелласар). В 3Цар 15:20 названия местностей перечислены в… … Библейская энциклопедия Брокгауза
Книги
- Ион Крянгэ. Избранные произведения. Воспоминания детства. Сказки. Повести , Ион Крянгэ. Бухарест, 1959 год. Издательство на иностранных языках. С иллюстрациями. Издательский переплет. Сохранность хорошая. Классик румынской и молдавской литератур Ион Крянгэ (1837- 1889) в своих…